太陽光発電の直流電気安全のための 手引きと技術情報 (第1版)

独立行政法人 産業技術総合研究所 太陽光発電研究センター システムチーム

2015年3月31日

直流電気安全のための手引きと技術情報(第1版) 目次

第1章 はじめに

1.1 本文書の紹介

第2章 組み合わせ設計編

- 2.1 組み合わせ設計に関する一般事項
- 2.2 図書の整備 (システム文書要件)
- 2.3 絶縁・地絡保護・過電流保護の基本原則
- 2.4 雷害保護設計
- 2.5 個別要素設計
 - 2.5.1 取り付け場所および電気工事
 - 2.5.2 配線方法
 - 2.5.3 DC 直列・並列アーク対策装置 (アーク検出/遮断器)
- 2.6 消防隊員保護対策

第3章 機器選定編

- 3.1 機器選定に関する一般事項
- 3.2 太陽電池モジュール選定
- 3.3 パワーコンディショナ選定
- 3.4 接続箱(筐体および遮断器を含む)選定
- 3.5 ケーブル設備および配線設備の選定
 - 3.5.1 コネクタの選定
 - 3.5.2 ケーブルの選定

第4章 運用保安における現場作業概略

- 4.1 運用_保安に関する一般的事項
- 4.2 太陽電池モジュールアレイの点検方法
- 4.3 パワーコンディショナおよび接続箱の点検方法

付録

付録 A 直流電気安全性に関連する構造設計

付録 B 太陽光発電設備の危険

付録 B.1 太陽光発電に関する感電の危険

付録 B.1.1 感電の危険の基礎

付録 B.2 太陽光発電に関する火災危険

付録 B.2.1 太陽電池モジュールの火災危険

付録 B.2.2 直流アークの火災危険

付録 B.2.3 過電流による火災危険

付録 B.2.4 過電圧による火災危険

付録 B.2.5 延焼性による火災危険

付録 B.3 太陽光発電の火災事例に関する情報

付録 B.3.1 国内事例

付録 B.3.2 海外事例

付録 B.4 消防隊員の保護に関する技術情報

付録 B.4.1 消防活動時における消火、残火処理時の危険

付録 B.4.2 消防向けガイドライン

付録 B.4.3 太陽光発電システム設置ガイドライン

付録 B.4.4 消防保護を目的とした国内外での対応(まとめ)

まえがき

この文書は、新エネルギー等共通基盤整備促進事業「太陽光発電システムの直流電気安全性に関する基盤整備」において、独立行政法人産業技術総合研究所及が作成したものである。

この文書は、著作権法で保護対象となっている著作物である。

この文書の一部が、特許権、出願公開後の特許出願、実用新案権、又は出願公開後の実用新案登録出願に抵触する可能性があることに注意を喚起する。独立行政法人産業技術総合研究所は、このような特許権、出願公開後の特許出願、実用新案権、又は出願公開後の実用新案登録出願にかかわる確認について、責任をもたない。

第1章 はじめに

太陽光発電システムは、エネルギー問題の解決には必要不可欠な発電技術である。わが国では、その 実用化と普及のために、長期にわたる技術開発や住宅分野への導入支援といったさまざまな政策が講じ られてきた。さらに、平成 24 年 7 月に施行された再生可能エネルギー固定価格買取制度により、さら なる太陽光発電システムの導入が進んでいる。

一方、太陽光発電システムは、システムが持つ感電・火災などの危険が存在することも事実である。 太陽光発電システムは、これらの危険を踏まえ、感電、火災その他人体に危害を及ぼし、又は物件に損傷を与えるおそれを許容限度内に抑えるように設計・施工しなければならない。そのためには、現状の危険を把握し、その対策を施した設計・運用を行うことが必要である。

このような背景の中、平成 24 年度~平成 26 年度において経済産業省「新エネルギー等共通基盤整備促進事業」委託研究「太陽光発電システムの直流電気安全の危険を許容可能な水準まで低減し、太陽光発電システムを安心・安全な発電技術とするためには、技術的、人文的、行政的な側面からのリスク低減方策の確立と、それらを流布し実行するための戦略や安全文化の醸成などが必要である。本事業は、特に技術的な側面からの安全確保の方策として、現状の危険把握と、行政的な側面からのガイドラインの策定を目的に実施された。本事業では、太陽光発電技術の研究者や業界団体、消防関係の研究者および団体で構成される「太陽光発電システムの直流電気安全基準策定委員会」を設置し、太陽光発電システムの安全確保性に資するべく、集められた知見をもとに、今後の直流安全基準・指針、すなわちガイドライン作りを目指して情報を整理し、技術的な議論を取りまとめた。現段階では基準策定の意味でのガイドライン策定には至らなかったが、「手引きと技術情報文書」として利用して頂きたい。

本文書は、太陽光発電の直流電気安全に関する、現時点で分かっている危険、あるいはこれまでの知見から想起可能な危険を紹介するとともに、それらを回避する安全確保の手段を可能な限り具体的に記載した。われわれは、本文書が多くの方が太陽光発電システムの安全について考え、安全確保のための行動するきっかけになってくれることを期待している。

ただし、本文書の内容は、太陽光発電システムの安全確保を実現するための技術的な内容および実効性を担保する内容の両面において網羅しきれていない。今後、さらなる得られた知見を適宜追加し、実効性を高める内容を記載することにより、本文書の内容の充実を図り、技術的にも社会的にも歓迎される太陽光発電システムの実現とその普及拡大を目指していきたいと考えている。

最後に、本書「太陽光発電の直流電気安全のための手引きと技術情報」の作成にご協力いただいた本委 員会委員および関係者各位に心より感謝申し上げる。

1.1 本文書の紹介と注意事項

本文書は、4つの章と付録編から成っている。

- 1章には、まえがきと本文書について紹介および関連法令について紹介した。
- 2章には、太陽光発電設備において組合せ設計となる設計項目について記載した。
- 3章には、太陽光発電の設計時における機器選定項目について記載した。

文書構成は、「設計指針」とその内容の「解説」を併記する方法とした。設計指針に関しては、明確なレベル設定は行っていないが、「・・こと。」と「・・・望ましい」の文末により優先順位に若干の傾斜を設けている。また解説では、最低限の基準としての関連法令について、可能な限り記載している。ただし、設計指針の基本は、安全確保を第一義として、原則を記載した。そのため、特別法の中には例外規定が存在する場合に、当該例外規定について、本書は一部記載している項目もあるが、網羅はしていない。そのため、例外規定については、読者がそれぞれ確認して欲しい。

また、設計指針とは別に、安全に関する最近の動向、検討事例、最新の知見については、別途「紹介 事項」として記載した。安全に関する参考情報として欲しい。

第4章には、運用保安に関する事項として、現場作業概略をまとめた。運用・保安を実施するためには、「測定」「推論」「対処」が必要であるが、本書は、現場作業での「測定」を助けるための材料を提供することを目的に記載した。「測定」の結果をもとに、事故やそれに至る恐れが無いことを「推論」するためには、測定以上の作業量が必要である。読者には、本書の内容が測定方法を示し明らかな危険の発見を見落とさないことの手助けとすることを目的に記載されていることを理解し、本書に示す「測定」要件項目のみを実施することだけでは、安全であると推論できないことに留意して欲しい。

付録 A には、太陽光発電の直流電気安全に関する構造設計を記載した。構造の事故は、直流電気事故に直結する。そのため、構造設計は、直流電気安全の設計において最重要な事項である。本来であれば、本項目の内容・記述を充実させ、「第 2 章 設計組合せ編」の一部とすることが必要である。しかしながら、構造設計の全体は、体系も分量も膨大である。そのため、本書は、太陽光発電の直流電気安全性に関連する構造設計の主要な部分だけ記述し、付録 A にまとめた。設計上重要であるが本項を付録とした理由は、本書に記述された内容だけが構造設計のすべてであるとの誤解を防止するためである。読者には、本書に記述された項目のみでは、構造設計は完成しないことに留意して欲しい。また読者には、構造設計の項目が付録にあるために優先順位が低いと勘違いせず、構造設計は太陽光発電の直流電気安全の設計のひとつであることを忘れないで頂きたい。

また、付録 B には、現在知られている太陽光発電システムの直流危険のうち、感電・火災に関連する ものを挙げた。読者には、これらの事例を通してリスクと結果の程度を知るうえで参考にして欲しい。 本文書における内容を正しく理解いただくために、特に今回含めていない項目を以下に列挙する。

- ・基本は結晶系太陽電池を利用したシステムを対象に記述している。それ以外の薄膜太陽電池や集光型太陽電池を使用した設備における注意点は十分に記載していない。薄膜太陽電池は、共通する部分もあるが、ストリングやアレイを構成する直並列数の違いや太陽電池の逆電圧特性が異なる点がある。
- ・国際標準に従い JIS C0364 系に基づいて設置される設備における注意点は記載していない。
- ・雷保護については、その全体を概観し、各種デバイスの特徴を説明するに至っていない。
- ・蓄電池を併設した設備における注意点は記載していない。
- ・法令関係についての説明を省略している。
- ・事故事例における過電圧の危険は記載していない。また、延焼性についての説明は十分でない。

読者の皆様には、上記を踏まえて本文書に記載された内容が安全確保に必要な事項をすべてではない ことに十分留意して本書の内容を活用して欲しい。

2章 設計 組み合わせ編

2.1 組み合わせ編 総論 (一般事項)

【目的】

電気設備に関する技術基準を定める省令を理解することにより、太陽光発電設備の施設における直流電気事故防止を図ることを目的とする。

【設計指針】

[1] 電気設備は、感電、火災その他人体に危害を及ぼし、又は物件に損傷を与えるおそれがないように施設しなければならない。

【設計指針 解説】

本設計指針は、全てに共通する原則である。

[1] 電気事業者の電力系統に接続される太陽光発電設備は、電気事業法において「電気工作物」とされ、出力 50kW 未満で電圧 600V 以下のものは「一般用電気工作物」、出力 50kW 以上のものは「自家用電気工作物」と区別される(電気事業法第 38 条)。太陽光発電設備は、どちらの場合も「電気設備に関する技術基準を定める省令」(電気設備技術基準)に適合するよう維持する必要がある(電気事業法第 39 条、第 56 条)。そして、電気設備基準の第 4 条には「人体に危害を及ぼし又は物件に損傷を与えないようにすること」が掲げられている。電気設備技術基準およびその解釈法令である「電気設備の技術基準の解釈」の条項の多くは、本条を実現するための具体的な規定である。しかし、これらの具体的な規定には従っていても、元である本条に反している設備は、電気設備技術基準に反するものであり、従って電気事業法に抵触する。電気事業法がこの義務を課す対象は、設備の所有者または占有者である。

また、民法 717 条には「土地の工作物の設置または保存に瑕疵があることによって他人に損害を生じた時は、その工作物の占有者は、被害者に対してその損害を賠償する責任を負う。」とあり、事故が発生した際には、占有者または所有者が責任を問われる。

設備を設置する際、周囲を加害しない様に配慮するべきであることは、法令以前に当然のことである。本文書はその具体策を提示するために作成されたものである。

なお、「電気設備に関する技術基準を定める省令」には、「他の電気設備その他の物件の機能に電気的又は磁気的な障害を与えないこと」(省令第 16 条)も掲げられている。また、直流電気の事故は、アレイの落下・圧潰による感電・地絡事故が多い。そのため、その他人体に危害を及ぼし、又は物件に損傷を与えることには、「飛散・落下・圧潰しないように」設計することも含まれる。

2.2 図書の整備 (システム文書要件)

【目的】太陽光発電設備を点検する場合、システム構成を変更する場合、異常を検知して検査を実施する場合、および事故が発生して対応を検討する場合等には、システム文書・図書が必須である。本項は その整備を目的とする。

【設計指針】

[2] 建築関係については、建築三法(建築基準法・建設業法・建築士法)で保存が義務づけられている図書を整備すること

【設計指針 解説】

図書の不備を原因として当該太陽光発電システムが置かれている状況が不分明となり、予防保全が困難化したり事故からの回復が長引いたりするケースは多い。そのため、建築関係、電気関係についての図書の整備は、直流電気安全の設計項目の一つである。そのため、設備の所有者または占有者は、これらの文書を所有することが必要である。

[2] 建築三法(建築基準法・建設業法・建築士法)において保存が義務づけられている書類・図面のうち、主に建築工事において作成するものの具体例を示す。

(1)建築基準法

建築基準法では、特に保存が義務付けられている書類・図面はない。

(2)建設業法

建設業法では、以下のように示されている。

法第 40 条の 3 建設業者は、国土交通省令で定めるところにより、その営業所ごとに、<-・中略-> その営業に関する図書で国土交通省令で定めるものを保存しなければならない。

上記の国土交通省令で定める図書には次の3つがある。(規則第26条第5項)

- ①完成図 (建設工事の目的物の完成時の状況を表した図)
- ②発注者との打合せ記録 (請負契約の当事者が相互に交付したものに限る)
- ③施工体系図
- ・発注者から直接建設工事を請け負った建設業者は、①および②のみでよい。
- ・作成特定建設業者は、①から③まですべて必要となる。
- ・完成図については、作成した場合のみ保存を義務付けており、国土交通省としての解釈指針的なもの(平成 20 年 10 月 8 日付国総建第 177 号)が出ている。しかしながら、具体的な図面は特定されていない。
- ・保存期間は、請け負った建設工事ごとに当該建設工事の目的物の引渡しをしたときから10年

間としている。(規則第28条第2項)「①完成図」と「②発注者との打合せ記録」については複数の書類が対象となるため、次に具体例を示す。

【完成図の具体例】

区分	具体例					
共通	図面リスト					
意匠	設計概要書、特記仕様書、室内仕上表、附近見取図、配置図、平面図、断面図、立面図、					
	矩計図、平面詳細図、断面詳細図、階段詳細図、屋外工事詳細図					
構造	構造概要書、特記仕様書 (構造)、杭伏図、基礎伏図、床伏図、屋根伏図、塔屋伏図、					
	軸組図、基礎リスト、柱リスト、大梁リスト、小梁リスト、スラブリスト、階段リスト、					
	壁リスト、鉄筋詳細図、鉄骨伏図、鉄骨軸組図、鉄骨詳細図					
設備	設備概要図、特記仕様書(設備)、電気設備設計図、給排水衛生設備設計図、空気調和					
	設備設計図、昇降機設備設計図、その他設備設計図					

【発注者との打合せ記録の具体例】

\Box	14	ь.	bet
뵨	44	Δ.1	47

質疑応答書、指示書・連絡書(発注者・設計・諸官庁)、総合定例打合議事録、社外打合せ記録 (諸官庁)

図 2.2-1 完成図の具体例

参考文献:「建築工事における書類・図面の電子化/保存ガイドライン(第2版)」 http://www.nikkenren.com/kenchiku/bcs_it/report/edoc2/edoc_guideline_v200.pdf

(3)建築士法

建築士法は、以下のように示されている。

建築士法第24条の4第2項

建築士事務所の開設者は、国土交通省令で定めるところにより、その建築士事務所の業務に関する図書で国土交通省令で定めるものを保存しなければならない。

保存図書は、以下に示す設計図書または工事監理報告書とされている。(規則第21条第4項)

- ① 配置図、各階平面図、2 面以上の立面図、2 面以上の断面図
- ② 基礎伏図、各階床伏図、小屋伏図、構造詳細図、構造計算書

なお、②は当該設計が建築基準法第6条第1項二号又は三号に係る場合のみとされている。建築 士事務所の開設者は、法第24条の4第2項に規定する図書を作成した日から起算して15年間当 該図書を保存しなければならない。(規則第21条第5項)

建築基準法第6条第1項第二号

木造の建築物で三以上の階数を有し、又は延べ面積が五百平方メートル、高さが十三メートル若しくは 軒の高さが九メートルを超えるもの

建築基準法第6条第1項第三号

木造以外の建築物で二以上の階数を有し、又は延べ面積が二百平方メートルを超えるもの

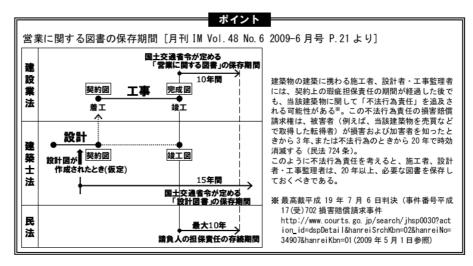


図 2.2-1 図書の保存期間

参考文献:「建築工事における書類・図面の電子化/保存ガイドライン(第2版)」 http://www.nikkenren.com/kenchiku/bcs_it/report/edoc2/edoc_guideline_v200.pdf

太陽光発電設備の電気関連文書は、建築関連文書に含まれる項目もあるが、特に太陽光発電設備の直流側の文書は、別途充実させることが重要である。設備の所有者または占有者は、最低限これらの文書の提供を受け、保管し、参照可能にしておくことが必要である。太陽光発電設備に関連する文書を当事者間で内容を決定する場合、IEC62446 ed1.0 Grid connected photovoltaic systems - Minimum requirements for system documentation、 commissioning tests and inspection「(受け渡し試験と目視試験及び付属書類のための最小要求」に示す「システム文書要件」においてリスト化された内容は、参考となる。IEC62446 に記載がある項目は、以下の通りである。

(1)システムデータ

基本システム情報は、少なくとも以下の情報を整備する。この情報は一般的にシステム文書パッケージの表紙に表示される。

- ①事業 ID 番号(該当する場合)
- ②システム定格(銘板)出力(kW DC または kVA AC)
- ③太陽電池モジュールおよびパワーコンディショナ、メーカ、型式および数量
- ③設置日
- ④受渡日
- ⑤顧客名
- ⑥現場住所

(2)システム設計業者情報

システム設計業者情報は、少なくとも以下の情報を整備する。複数の会社が当該システム設計に 責任を有す場合、下記情報はすべての会社について、当該事業における各社の役割の説明と併せて 整備することが望ましい。

①システム設計業者会社名

- ②システム設計業者担当者名
- ③システム設計業者の郵送先住所、電話番号、eメールアドレス

(3)システム設置業者情報

システム設置業者情報は、少なくとも以下の情報を整備する。複数の会社が当該システム設計に 責任を有す場合、下記情報はすべての会社について、当該事業における各社の役割の説明と併せて 整備することが望ましい。

- ①システム設置業者会社名
- ②システム設置業者担当者名
- ③システム設置業者の郵送先住所、電話番号、e メールアドレス

(4)配線図

配線図として、少なくとも単線結線図を整備する。

(5)太陽電池アレイ - 一般仕様

配線図もしくシステム仕様は、少なくとも以下の太陽電池アレイ設計情報を含むこと。

- ①太陽電池モジュールの種類
- ②太陽電池モジュール総数
- ③太陽電池ストリング数
- ④太陽電池ストリングあたりの太陽電池モジュール数
- ⑤太陽電池ストリングとパワーコンディショナとの接続関係を示す情報

ひとつの太陽電池アレイがサブアレイに分割されている場合、配線図はアレイ・サブアレイ設計を示し、各サブアレイについて上記のすべての情報を記載すること。太陽電池アレイがどのようにストリングに分岐しているかを示した PV システム配置図も有用である。

IEC62446には記載がないが、以下も重要である。

⑥太陽電池モジュールの個別仕様(定格出力、動作電圧、開放電圧、動作電流、短絡電流、最大システム電圧、温度特性等)

(6)太陽電池ストリング情報

配線図もしくはシステム仕様書は、少なくとも以下の太陽電池ストリング情報を含むこと。

- ①ストリングケーブル仕様 サイズとタイプ
- ②ストリング過電流保護機器の仕様(装着している場合) 種類と仕様(定格電圧/電流/整定範囲等)
- ③逆流防止ダイオードの種類(関係する場合)と仕様

(7)太陽電池アレイ電気情報

配線図もしくはシステム仕様書は、少なくとも以下の太陽電池アレイ電気情報を含むこと。

- ①アレイ主幹ケーブル仕様 サイズとタイプ
- ②アレイの接続箱/集電箱の場所(該当する場合)
- ③直流開閉器の種類、場所および定格(電圧/電流)

④アレイ過電流保護機器(該当する場合) - 種類、場所および定格(電圧/電流)

(8)交流システム

配線図もしくはシステム仕様書に、少なくとも以下の交流 AC システム情報を含む。

- ①交流解列器の場所、種類および定格
- ②交流過電圧保護機器の場所、種類および仕様(定格電圧/整定範囲等)
- ③残留電流(零相電流)検出装置の場所、種類および仕様(定格電流/整定範囲等)定格(装着されている場合)

(9)接地と過電圧保護

配線図もしくはシステム仕様書は、少なくとも以下の接地および過電圧保護情報を含むこと。

- ①すべての接地/ボンディング導体の詳細 サイズと種類。アレイ枠等電位ボンディングケーブルが装着されている場合、文書はその詳細も含むこと。
- ②既存の雷保護システム(LPS)への接続の詳細
- ③交流および直流電路両方に設置されたサージ防護デバイスの詳細。場所と種類、定格を含む。

(10)データシート

データシートは、少なくとも以下のシステムコンポーネントを整備すること。

- ①太陽電池モジュールのデータシート:システムに使用されているすべてモジュール。
 - IEC 61730-1 の要件に従うこと
- ②パワーコンディショナのデータシート:システムに使用されているすべてのパワーコンディショナ。

他の重要なシステムコンポーネント:データシートの整備を行うことが望ましい。

(11)機械学的設計情報

架台・構造設計のデータシートを整備すること。構造設計に関連する文書を含めること。

(12)運転および保守管理情報

運転および保守管理情報は、少なくとも以下の項目を含めること。

- ①正しいシステム運転を確認するための手順
- ②システム故障の場合にとるべき行動のチェックリスト
- ③緊急停止/解列手順
- ④保守管理と清掃に関する推奨要領(存在する場合)
- ⑤太陽電池アレイに関連する将来の建物作業(屋根工事など)に関する考慮点
- ⑥太陽電池モジュールとパワーコンディショナの保証書 ― 保証開始年月日と保証期間を含む
- ⑦該当する工事保証もしくは風密・水密性保証書

(13)試験結果と受渡データ

すべての試験結果と受渡データを整備すること。

2.3 絶縁・地絡保護・過電流保護の基本原則

【目的】

太陽光発電システムの地絡要因の火災を未然に防止する。[1]~[4]、[9] 事故時に他のストリングからの逆電流の流入による事故の拡大を防ぐ。[5]~[8]

【設計指針】

- [1] 地絡故障検出を行うこと。
- [2] 地絡故障検出を頻繁に行うこと。
- [3] 地絡を検知した場合、警報を出せること。
- [4] 地絡電流を検知した場合、当該地絡電流を遮断すること。
- [5] 地絡位置を特定できる機能をもつことが望ましい。
- [6] 直流回路は、JISC8954 (太陽電池アレイ用電気回路設計標準) および JISC0364-7-712 (建築電気設備-第7-712 部:特殊設備又は特殊場所に関する要求事項-太陽光発電システム) を参考に設計すること。
- [7] 過電流防止機能は、各種事故様相を考慮した逆電流(過電流)を想定した素子および機能とすること。

【設計指針 解説】

[1] 地絡とは、電路と大地の間のインピーダンスが低下することである。国内太陽光発電設備の直流回路の線間電圧および対地電圧は、システム起動時等の過渡的な場合を除き直流であるため、インピーダンスとしては抵抗成分が問題になる。すなわち、国内太陽光発電設備の直流回路における地絡検出とは、電路と非充電部の間の絶縁抵抗の低下を検出することである。これを常時行うこと、換言すれば常時絶縁監視を行うことが好ましい。常時ではなくとも、定期的に絶縁抵抗の低下が起きていないか検査することが必要である。

非絶縁型太陽光発電設備の場合、発電中は直流電路が交流回路経由で接地されるため、絶縁抵抗測定を行うことは原理的に困難である。そこで、非絶縁型太陽光発電設備においては、漏洩電流を零相電流として検出することが広く行われている。しかし、地絡が発生しても地絡箇所が大地と同電位であれば、原理的に漏洩電流が発生しない。また、対地電位が0でなくても、零相電流検出感度が低いと地絡を検出することが困難である。たとえば、零相電流検出感度が100mAの場合、対地電位160Vの箇所であっても絶縁抵抗が1.6k Ω にまで低下しないと地絡は検出されない。絶縁抵抗が2k Ω に低下した状態は地絡故障であるが、零相電流の監視ではこれを検出することはできない。すなわち、パワーコンディショナが行う零相電流の監視だけでは、地絡故障検出は不確実であり、他の方法を併用するべきである。

国際規格である IEC62109-2 (Safety of power converters for use in photovoltaic power systems – Part 2: Particular requirements for inverters)は、絶縁抵抗の測定と、零相電流監視の両者を求めている。具体的には、パワーコンディショナ起動前に絶縁抵抗を測定し、その値で太陽電池アレイ電圧を除した結果が 30mA 以下であることが求められている。ドイツ規格(DIN V VDE 0126-1-1(2006))はさらに厳しく、パワーコンディショナ起動のためには絶縁抵抗 $500\text{k}\,\Omega$ 以上が必要とされる。

平成 24 年度新エネルギー等共通基盤整備促進事業において、国内で使用されている住宅太陽光発電設備用パワーコンディショナ6社6機種について地絡検出機能を実験・評価した。その結果、地絡が発生しても漏洩電流監視では、地絡の発生を検出できない「地絡検出の不感帯」が全機種に存在していた。実験により確認した国内で使用されている住宅太陽光発電設備用パワーコンディショナの検出不感帯と米国の太陽光発電システムの有している地絡検出不感帯との比較をすると、国内において「地絡検出の不感帯」に起因して地絡火災が発生する危険性は、米国における危険性と比較しても低くない。地絡検出において、検出不感帯があると、以下のメカニズムにより地絡火災が発生する危険がある。実際に米国において、事故事例が報告されている。

Stepl:検出不感帯における第一地絡故障の発生

Step2 : 第一地絡故障の発生が検出されず、運転継続

Step3 : 検出不感帯以外での第二地絡故障の発生

Step4 : 第二地絡故障の発生が検出されても、第一地絡故障点、第二地絡故障点を通る事故電流

を遮断できず、事故の拡大

また、交流電気設備との比較では、次のことが言える。交流電気設備において接地された相において発生する地絡は検出されにくく、交流電気設備にも地絡検出の不感帯は存在するが、第二地絡故障が発生した時に事故点を系統から解列することによって事故危険を回避できる可能性が高い。これに対して、太陽光発電の直流電気回路における2点地絡により発生する事故電流は、直流電気回路を開放しても終息させることができないため、太陽光発電の直流電気回路において発生する地絡事故と比較して危険である。なお、交流電気設備との比較や太陽光発電の直流電気回路において発生する地絡事故と比較して危険である。なお、交流電気設備との比較や太陽光発電の直流電気回路において発生する地絡事故の問題については、「付録 B.2.2 直流アークの火災危険」に詳述した。以上の理由により、太陽光発電の直流電気回路における「地絡検出の不感帯」は、事故に結びつく蓋然性が高いことが明らかであり、検出不感帯(ブラインド)の無い地絡故障検出を行うことが必要である。

地絡故障検出を行う機器は、パワーコンディショナ等の機器内蔵であっても、地絡検出専用機であっても良い。現在入手可能な、検出不感帯が無くかつ高感度な製品は、いずれも監視信号を注入する方式を用いている。これらの製品は、地絡故障(絶縁劣化)を検出するために、電力系統には存在しないレベルの低周波の監視信号を線路に重畳し、高調波成分等による漏れ電流と区別して検出している。(将来は信号注入に頼らず検出不感帯を持たない製品が登場する可能性もある。)

監視信号を注入する方式は、対地静電容量によって不要動作する恐れがあるため、平成 26 年度 新エネルギー等共通基盤整備促進事業では、3 社 3 機種の地絡検出/絶縁監視装置の不要動作発生 の恐れが検討された。その結果を、表 2.3-1、2.3-2、2.3-3、に示す。これら 3 機種はいずれも海外では実績があり、製品仕様では対地静電容量が $2000\,\mu$ F まで使用できるとされている。A 社製品 はその範囲で正しく動作することが確認されたが、C 社製品は対地静電容量 $10\,\mu$ F 以上、B 社製品 は対地静電容量 $850\,\mu$ F 以上では不要動作が見られた。太陽光発電設備の対地静電容量を見積もり、地絡検出/絶縁監視装置を選択することが必要である。なお、太陽電池モジュールの対地静電容量 の測定例は、「付録 A03 地絡とアーク遷移、2Voc 事故」に挙げた。

これらの製品が注入する低周波監視信号の振幅は、±10~70V程度であった。この信号注入が不具合を引き起こす可能性が皆無であると証明することはできないが、直流電気回路の電圧自体に比

べれば小さく、海外では使用実績もあることから、不具合を引き起こす可能性は低い。従って、地 絡検出/絶縁監視装置の設置によって不具合が発生する恐れと、地絡検出による地絡事故の恐れの 低減を比較すれば、地絡検出/絶縁監視装置の設置は安全性向上に寄与すると言える。

表 2.3-1 A社製地絡検出/絶縁監視装置の評価結果(地絡判定閾値=100kΩ)

絶縁抵抗	対地静電容量(μF)				
値(kΩ)	2000	1480	1000	100	
76	検出	検出	検出	検出	
125	不検出	不検出	不検出	不検出	

表 2.3-2 B 社製地絡検出/絶縁監視装置の評価結果(地絡判定閾値=100kΩ)

絶縁抵抗	対地静電容量(μF)					
値(kΩ)	2000	1000	850	500	330	100
76	検出	検出	検出	検出	検出	検出
125	検出	検出	検出	不検出	不検出	不検出
1000	不検出	不検出	不検出	不検出	不検出	不検出

表 2.3-3 C社製地絡検出/絶縁監視装置の評価結果(地絡判定閾値=100kΩ)

絶縁抵抗	対地静電容量(μF)					
値(kΩ)	2000	350	33	10	4. 7	2. 2
76	検出	検出	検出	検出	検出	検出
125	検出	検出	検出	検出	不検出	不検出
1000	検出	検出	検出	不検出	不検出	不検出

低周波監視信号を注入する地絡検出/絶縁監視装置は、動作中の非絶縁型システムを監視することはできない。しかし、例えば非絶縁型パワーコンディショナが停止している間は、太陽電池は大地から絶縁されるため、低周波監視信号を注入する地絡検出/絶縁監視装置によって監視が可能である。具体的には、朝夕に地絡検出を行う方法が考えられる。

直流側を接地したシステムも低周波監視信号を注入する地絡検出/絶縁監視装置で監視することができない。この場合は、例えば絶縁抵抗測定時には接地を切り離す等の手段が考えられる。

[2] 定期点検において地絡が検知されなくても、次回の定期点検までの間に2点地絡を生じ事故に 至る可能性を排除することはできない。従って絶縁監視をできる限り頻繁に行うことが重要であり、 理想的は地絡を常時監視することである。

国際規格である IEC62109-2 (Safety of power converters for use in photovoltaic power systems – Part 2: Particular requirements for inverters)は、前述のとおりパワーコンディショナ起動前に絶縁抵抗測定を求めており、これを最低限度の目安とすることが考えられる。

設備を長期間使用しない場合は、パワーコンディショナを起動させないため、当該期間中絶縁抵抗

測定を行わなくても IEC62109-2 に反しない。しかし、設備を長期間使用しない場合でも地絡事故 の恐れはあるため、「パワーコンディショナ起動前」よりも毎日絶縁抵抗測定を行う方が好ましい。

- [3] 上記[1]に示したとおり絶縁を監視していて地絡故障を検知した場合は、第二の地絡故障が発生する前にそれを除去することが必須である。このため、地絡を生じたことを設備使用者、設備管理者に知らせることが必要である。知らせる手段、リセットする条件の決定には IEC62109-2 を参考にすることができる。IEC62109-2 (13.9)には、絶縁抵抗値が所定値を下回った際には、以下の両者にて発報するべきことが示されている。
 - ①インバータに組み込まれていて、目に見えまたは耳に聞こえる信号
 - ②外部から検知でき使用できる電気的な信号

絶縁低下が検出された時に、絶縁型インバータでは発報しつつ運転継続が許されているのに対し、 非絶縁型インバータの場合は発報しかつ解列することが求められている(4.8.2.1)。

- [4] 地絡電流は、パワーコンディショナを通過する零相電流や、接地点から大地への漏洩電流として検出される。地絡電流が検出された場合は、これ停止させるため当該検知箇所を遮断しなければならない。たとえば、非絶縁型のパワーコンディショナが零相電流を検知した時にパワーコンディショナを停止させることや、接地点から大地に流れる電流が検知された時に接地を切り離すことがこれに該当する。これは、事故電流を検知したらそれを遮断する、という意味であるから、その必要性は明らかである。また、電技解釈第36条にはそれを義務づけた記載がある。
 - その検出閾値、動作時限は、防止しなければならない事象(火災、感電)によって異なる。具体的には、感電に対しては「付録 B.1 太陽光発電に関する感電の危険」で述べたとおり、交流電流の遮断の場合と同様の遮断閾値、時限を持たせることが安全である。一方、火災に関しては元々、直流と交流で差は無いと考えられる。従って、感電防止用の漏電遮断機の動作条件、火災防止用の漏電遮断器の動作条件にそれぞれ準じて遮断することが適切と考えられる。
- [5] 本節では地絡検出の要件として、以下の2点を挙げた。
 - [1]検出不感帯(ブラインド)の無い地絡故障検出
 - [3]絶縁状態を頻繁に監視できること
 - この他、「付録 B.2.2 直流アークの火災危険」において、以下を要件として挙げた。
 - "地絡検出と同時に地絡位置を特定できること"
 - この理由は、以下の2点である。
 - ①太陽光発電装置の直流地絡は不安定な現象であるため、地絡を検知したその時に、位置を特定 しないと、地絡した箇所がどこであるか分からなくなり故障除去が困難こと
 - ②海外では第1地絡故障の検出に成功したにも関わらず、その場所を探している間に第2地絡故障を生じ火災に至った場合があること

これらをまとめると、地絡火災を防ぐためには、以下の①~③を満たすことが望まれる。

- ①検出不感帯が無い事
- ②頻繁に監視できること
- ③地絡を検出と同時に、地絡箇所を特定できること。

現実には上記①~③を全て備えた装置は入手できないが、①と②を備えた絶縁監視装置や、①と③を備えた絶縁抵抗測定装置は入手可能である。従って、①~③を全て備えた装置の実用化に期待するとともに、当面はこれらを使用して事故防止を図るという移行措置が考えらえる上記[1]では上表に示したとおり、条件①~③を全て具備する地絡保護装置は実用化されていない。①と②を具備した監視装置、①と③を具備した検査装置には製品があり、それらの活用は現段階で推奨される方法である。具体的には、①と②を具備した監視装置としては、交流電圧またはパルス電圧を大地から絶縁された電路と大地との間に印加し、電流から絶縁抵抗を求める機器が海外メーカから供給されている。この方法では地絡箇所の同定は困難であるが条件①②を満たせることから、現時点で可能な対策を盛り込んだ設備設計であると言える。

一方、①と③を具備した検査装置としては、太陽電池ストリングの正極を抵抗を介して接地した時の漏洩電流、太陽電池ストリングの負極を抵抗を介して接地した時の漏洩電流、太陽電池ストリングの極間電圧、および接地に使用する抵抗の4者から、絶縁抵抗値と地絡位置を求める方法(自己バイアス方式)が、国内メーカー(マルチ計測器および日置電機)によって製品化されている。ただし、本製品は常設して使用されることを想定していない。

①と③を備えた装置の活用は、設備運用時になされる事である。一方、①と②を備えた装置の活用は、設備設計において採用するとともに、それを踏まえた設備運用を決める必要がある

各種地絡検出方式について①~③への適否を次表に示す。

要求事項への適合性 番 ②頻繁な監視 地絡検出方式 ①検出不感帯が ③地絡検出と同時 묽 (常設可能な装置 無い に場所が分かる の有無) 零相電流監視方式 \times \bigcirc X 1 2 抵抗分圧中点接地方式 \bigcirc 3 交流(またはパルス)信号注入方式* \bigcirc \bigcirc X 4 自己バイアス方式** \bigcirc \times \bigcirc

表 2.3-4 地絡検出方式の比較

吉富政宣:太陽光発電システム向け各種絶縁抵抗測定法の得失検討一適切な点検手順導出のための 論点抽出(太陽光発電システムの安全保護 その 5)、太陽エネルギー、Vol.40、No.3、pp.105-118

^{*}Bender、Schneider、ABB が常設可能な製品を製造している

^{**}本法の詳細については、以下の文献を参照されたい。

(2014)

[6] IEC60364-7-712 と JISC0364-7-712 は同様の内容であるのに対し、JISC8954 と IEC/TS 62548 は内容が異なる。いずれの規格も、法令(電技、および電技解釈)からは参照されていないが、法令だけでは太陽光発電システムの直流回路設計に必要な情報が不足しており、これらの規格を参考にすることが必要である。なお、接続箱の規格として JISC0364-7-712 は IEC60439-1 を引用しているが、当該規格は取り下げられており接続箱の規格は明確ではない。

逆流防止ダイオードに関しては、過電流保護として利用できるかについての議論は国際的におこなわれている。太陽光発電は通常は過電流といっても、Isc 以上電流は流れないが、事故様相によっては、アレイを構成する他のストリングからの逆電流、順電流が流れ込むこともある。

IEC/TS 62548では PV システムのアレイ設置に関する電気的および機械的な安全基準について記述している。その 6.3 項に過電流保護に関する一般的な要求事項や、過電流保護デバイスの定格電流とモジュールやアレイの短絡電流の関係について記載されているが、デバイスの種類については規制していない。デバイスの規制としては、7.3.10 項にヒューズ、7.3.12 項には逆流防止ダイオードに関する記載がなされ、過電流保護デバイスとしてヒューズが規制されている。逆流防止ダイオードは夜間のバッテリー側からの逆流保護用として記載されているが、過電流保護デバイスとして使用できる(ヒューズ代用としての使用が許される)国は限られることが記されている。後述のとおり、日本は小出力発電設備においては、逆流防止ダイオードを過電流保護デバイスとして許容している。

また、アメリカ電気工事基準(NFPA70)の第 690 条に PV システムに関する標準が記載されており、その中で『逆流防止ダイオード:光起電源回路への電流の逆流を阻止するために使用するダイオード』としてシステム構成部品の一つに上げられている。ただし、ダイオードを過電流保護デバイスとして使用することに関しては記載がない。 PV システムの過電流保護機能に関しては同第240条『過電流保護』を参照し、ヒューズまたは遮断器の使用を求めている。このように、海外の規格では PV システムの安全装置としての過電流保護デバイスにヒューズを用いることが定められている。

一方国内では、電技解釈解説第200条【小出力発電設備の施設】には以下の記載がある。

2 小出力発電設備である太陽電池発電設備は、次の各号により施設すること。

. . . .

ハ 太陽電池モジュールを並列に接続する電路には、その電路に短絡を生じた場合に電路を保護する過電流遮断器その他の器具を施設すること。ただし、当該電路が短絡電流に耐えるものである場合は、この限りでない。(関連省令第14条)

電技解釈解説第200条【小出力発電設備の施設】には以下の記載がある。

第一号イは、太陽電池モジュール、機器及び電線等は、取扱者以外の者が触れることも考えられることから、充電部分が露出しないように施設することとした。 ロは、屋外配線、屋側配線、屋内配線、電気使用機械器具等に異常

が発生した場合又はこれらの設備の点検の場合に必要に応じて太陽電池モジュールからの電気を開閉できるよう開 閉器その他これに類する器具を施設することとした。「その他これに類する器具」の例としては、差込み接続器が考 えられる。 ハは、太陽電池モジュール、電線等の電路を過電流から保護するために規定した。直列に接続した太陽 電池モジュールは、その特性上短絡時においても定格電流の 1.1 倍から 1.2 倍程度の電流しか発生しないため、電 路の過電流保護は使用電線に余裕をもたせることにより、特別に保護装置を考えなくてもよい場合が多い。しかし、 太陽電池を並列に多数接続した場合、並列にした他の太陽電池から事故点へ短絡電流が供給されることから、事故 点のある電路の過電流保護のため、過電流遮断器その他の器具を施設することを規定した。 したがって、電路に短 絡が生じ、並列にした他の太陽電池から事故点へ短絡電流が供給されても、その電流に耐えうる電路には、上記の 過電流遮断器等は、施設しなくてもよい。「その他の器具」の例としては、逆流防止ダイオードが考えられる。

逆流防止ダイオードでは、アレイを構成する他のストリングからの周り込み電流を防ぐことができる。このため、並列アークまたは地絡アークによって、特定ストリングの電圧が低下した場合でも、事故電流は発生しない(図 2.3-1 右側)。図 2.3-2 は、ストリングの N 極に近い部分において地絡事故が発生した場合、図 2.3-3 はストリングの P 極に近い部分において地絡事故が発生した場合を示している。それぞれの地絡事故発生条件において、図 2.3-2 は、N 極側にブロッキングダイオードを設けることが逆流防止に有効であること、図 2.3-3 は、P 極側にブロッキングダイオードを設けることが逆流防止に有効であることを示している。

また、母線(ストリングが並列接続された幹線)の地絡を含む多点地絡には特に注意が必要である。 図 2.3-2 右側および図 2.3-3 右側には、逆流防止ダイオードを設置した極と逆極の母線地絡を含む 多点地絡も同じ回路となる。これらの場合は、逆流防止ダイオードが有効に機能し、事故電流の発 生を防いでいる。しかし、逆流防止ダイオードを設置した極と同極での母線地絡を含む多点地絡が 発生した場合は、事故電流を防ぐことができない。これに対する考え方は次項で紹介する。

一方で、逆流防止ダイオードはサージなどにより故障する恐れがある。短絡故障した場合には、通常運転時には、順方向電流を流すため、故障の発見が難しく、かつ保護回路として機能しなくなるデメリットがある。前述の通り短絡故障の場合発見が困難であることから、実フィールドでの短絡故障の頻度は十分把握できていない。また、経済的デメリットとして、常時通電となるためダイオードの電圧ドロップ分の発電損失が挙げられる。

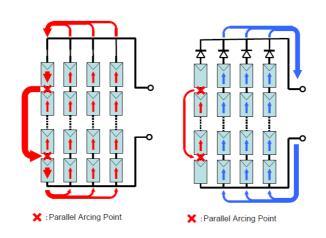


図 2.3-1 パラレルアークにおけるブロッキングダイオードの効果

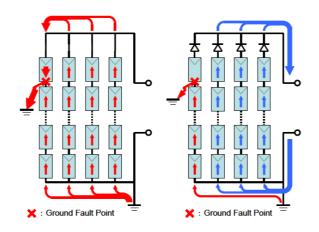


図 2.3-2 N極側母線地絡におけるブロッキングダイオードの効果

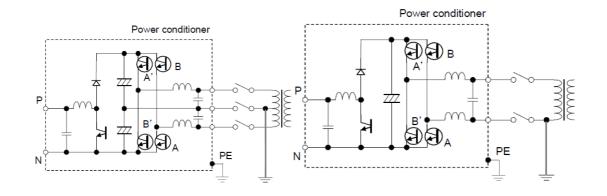


図 2.3-3 P極側母線地絡におけるブロッキングダイオードの効果

[7] 直流回路設計における過電流保護については、国際規格としては IEC/TS 62548(PV システムの設置・安全性要件)ed.1 および IEC60364-7-712 がある。これに対応する JIS がそれぞれ JISC8954 および JISC0364-7-712 となっている。国内では、過電流保護デバイスとして、逆流防止ダイオードを利用してきたため一部記載が異なるが基本設計は本規格の要求事項を満足することが最低限の安全基準となる。

また、最も効果的な過電流保護方法は、逆流防止ダイオードおよびヒューズを併用することである。これは逆流防止ダイオードの短絡故障時の無保護の危険やヒューズの部分的逆電流発生の危険をそれぞれ保護することを意味する。また、両極に設置することは、各種事故様相により発生する正負極からの過電流を保護することができるため、理論的には最も効果的な過電流保護である。ただし、逆流防止ダイオードおよびヒューズの素子数が増えることは、接続箱の熱設計が困難になることや、利用する素子数が増えることにより、製造不良や素子不良による火災発生の確率が増加する恐れもある。したがって、発注者と設計者は、保護すべき事故様相を考慮して、過電流保護機能と接続箱の設計の両面を考慮した選択が必要である。過電流防止の設計は、事故想定と事故電流の

経路をあらかじめシミュレーションすることが重要である。ストリング数、パワーコンディショナ構成および系統側の接地方式、事故発生場所などのさまざまな条件設定が必要である。例えば、トランスレスインバータの利用、かつヨーロッパのような活線接地の場合、太陽電池アレイは、対地電位に対して+-双方の電圧が加わるため、逆流防止ダイオードの位置や極性について考慮した設計を行う必要がある。過電流防止の対策は、パワーコンディショナのトポロジ、接地条件、故障様相の想定により設計する必要がある。

a) 日本の例(中性線接地)

b) 欧州の例(活線接地)

図 2.3-4 図 XXX パワーコンディショナの接地方式の差異

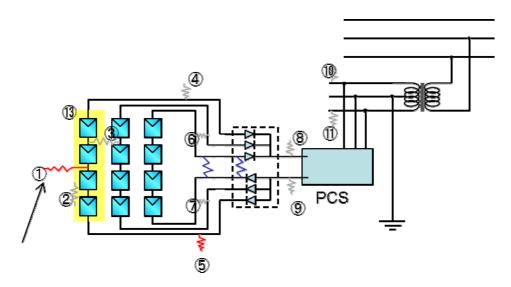


図 2.3-5 直流回路の過電流保護設計における事故想定例

逆流防止ダイオードを利用する場合は、順方向で常時通電状態であるために熱設計が重要である。 欧州の過去の研究では、熱設計が不十分であったことから、実フィールドでの逆流防止ダイオード の設計不良が散見され、実際の故障も発見された報告がある(参考文献 1)。そのため、逆流防止 ダイオードを利用する場合は、短絡故障の恐れを低減するために、接続箱の熱設計は不可欠である。 (参考文献 1:Reliability Study of Grid Connected PV Systems Field Experience and Recommended Design Practice、 Task 7 Report IEA-PVPS T7-08: 2002.)

逆流防止ダイオードの許容電流については、IEC/TS 62548 は STC 条件における短絡電流の 1.4

倍以上を要求している(7.3.12)。逆流防止ダイオードの耐電圧については、規格はストリング電圧の2倍以上を求めている。(JISC0364-7-712 712.512.1.1、IEC/TS 62548 7.3.12、JISC8954 には記載無し)。ただし、施工の誤り等により、太陽電池ストリングを接続箱に接続する際に極性を誤って接続した場合は、ストリング電圧の2倍の耐電圧では安全率が無いため、これよりも高い耐電圧を持たせることが好ましい

ヒューズを利用する場合は、IEC/TS62548 における過電流に対する保護の要件事項を満足する設計が必要である。IEC/TS62548 ではストリング、サブアレイ、アレイ単位で過電流保護をしめしており、それぞれストリングの場合モジュールの Isc の 1.25 倍以上 2.4 倍以下の定格遮断電流値とする、サブアレイでは、サブアレイの Isc の 1.25 倍以上、2.4 倍以下、アレイではサブアレイのIsc の 1.25 倍以上、2.4 倍以下、アレイではサブアレイのIsc の 1.25 倍以上、2.4 倍以下としている。また、デバイスとしては過去に交流用ヒューズを代用したり、適切な遮断時間、遮断容量を設定しない場合にヒューズボックスからの火災事例が報告されている(参考文献 1)。そのため、ヒューズを利用する場合は、太陽光発電用のヒューズ規格として作成された、UL2579_9(FUSES FOR PHOTOVOLTAIC SYSTEMS)およびIEC 60269-6(「gPV ヒューズ」)の要求事項を満足する製品を利用することが必要である。

参考文献; Peter Kremer、Arcing potential in fuses: missing standards for adequate testing of fuses in PV application、International workshop "Arcing in Photovoltaic DC-Arrays - Potential Dangers and Possible Solutions"、2007

【参考1】太陽光発電設備の接地方式

接地を検討する際は、電気的事項以外に、機械的強度および耐食性も重要な要素であるが、その説明 は割愛し電気的事項について以下説明する。電気設備の接地には、以下のとおり様々な目的、方法があ る。

- ①接地の目的・機能としては、感電防止、対地電位の安定化、地絡検出が挙げられる。
- ②露出性導電部(金属筐体等)は通常接地されるのに対し、電路は接地される場合も接地されない場合もある。
- ③電路の接地先大地と、露出性導電部の接地先大地は、同じである場合と異なる場合がある
- ④)接地電路として使用される導体としては、接地の目的・機能によって種々の線径が、考えられ、また接地電路が電流ヒューズや抵抗を含む場合もある。

接地には上記観点から多種多様な目的、方法が考えられる。それらは、上記②③の観点から TN 系、TT 系、IT 系に大別される。日本の交流電気設備の多くは、後述のとおり TT 系であるのに対し、太陽光発電の直流回路にはこれらすべての場合がある。また、日本の場合、絶縁 PCS では運転時も停止時も、共に IT。他方、トランスレス PCS では、運転時 TT、停止時 IT となる。ただし、PCS 出力側の交流電路は接地されているものとした。そのため、計画の実況に応じ注意深くトポロジを判断して欲しい。(なお、相互に電気的につながった電路において複数の箇所を接地することは、たとえそれらが等電位であっても、電路と大地で閉回路が形成されるため避けなければならない。)

(3)0364の接地条項の概要

低圧電路の電力配線の際には、感電と火災に対して保護を行う必要がある。接地は基本的保護のひとつ。接地による保護はいくつもの方式に分かれ、これら様々な方式を一括して接地系統と呼ぶ。なお、ここで言う系統の語は商用電力のことではなく、英語で言うところのシステムに相当する。接地系統にはTN、TT、ITという3種類の基本形があり、これらは中性線と露出性導電部と大地との関係で定まる。呼称ルールは、以下の通りである。

- ①第一番目の文字はパワーラインとグラウンドとの関係を示す記号で、TとIがある。
 - T: Terre, I: Insulation
- ②第二番目の文字は機器の露出導電性部分(金属筐体等)を接地する先を示す記号で、T と N がある.
 - T : Terre. N : Neutral
- ③第三番目の文字は、中性線と保護導体(露出導電性部分(金属筐体等)と接地極を接続する導体)の布設関係を示す記号で、SとCがある。
 - S: Separated, C: Combined

省令第5条では、電路は大地から絶縁するべきことが定められており、この原則に従ったシステムは IT 系となる。しかし、同条ただし書きには、危険回避のための接地を行う場合、電路と大地を接続して も危険が無い様に対策を行う場合はこの限りではないとされている。実際には国内の多くのシステムで

はこのただし書きによって、TT系が採用されている。また、解釈第18条によって鉄筋に全てを接地する場合はTN系と言える。

図 2.3-6 記号の説明

(4) TN 方式

欧州や米国や中国の交流電気設備はこの方式。電路と露出性導電部は、共通の接地極によって接地されている。本方式はさらに TN-S、TN-C、TN-C-S に分かれる。TN-S は保護導体(PE、露出導電性部分(金属筐体等)と接地極を接続する導体)を中性線(N)と別に設ける方法。N を接地相と見做して構わない。他方 TN-C は保護導体(PE)と中性線(N)を一体に扱う。この導体を PEN 導体と呼ぶ. TN-C-S は両者が混在した形式。

(5) TT 方式

日本の交流電気設備はこの方式である。電路と機器の露出導電部と露出性導電部が電気的に分離されており、両者は電路の接地極一大地一露出性導電部の接地極を介してのみ繋がっている。すなわち、露出性導電部は電気機器の近く(たとえば当該家屋の近く)に接地されるのに対し、電路は電源の近く(たとえば柱上トランスの近く)に接地される。露出性導電部はそれぞれ別個に保護導体を通じて接地極につながれる。

(6) TN 方式と TT 方式の得失

電気機器の近く(たとえば当該家屋の近く)の大地と、電源の近く(たとえば柱上トランスの近く)の大地が同じ電位であれば、TN 方式と TT 方式の間で、電位状態に大きな差は生じない。しかし、落雷で大地に大電流が流れる場合は、両者の電位が相違するので、TN 方式と TT 方式で、電位状態に差が生じる。

TN 方式では、露出性導電部(金属筐体)と電路の間の電位差が変化しにくいため、Y コンデンサの破壊などの機器故障を生じにくい。一方、電気機器の近くの大地の電位と、露出性導電部(金属筐体)の間には大きな電位差を生じうるため、人体の一部(たとえば足)が大地に接触しつつ他の部分(例えば手)が機器筐体に接触した場合には、感電の危険が生じる。屋内設置される電気設備の場合は、電気機器と大地の両者に同時には接触しがたいため、この恐れは通常は小さい。しかし、太陽電池モジュールや接続箱等は屋外に設置されるため、機器の露出性導電部(つまりモジュールのアルミフレームや架台)と大地の同時に接触する可能性があり、落雷時にはこの両者の電位差によって感電する懸念がある。

TT 方式はこれらの逆となる。すなわち、接地された相の電位は電源(たとえば柱上トランス)近くの大地と同じ電位であるのに対し、露出性導電部は機器設置箇所の大地電位と同じ電位であるため、落雷時に電気機器が損傷する懸念が TN 方式より大きい。しかし、太陽電池モジュールのアルミフレームや架

台の電位は、それらが設置されている場所の大地と同じ電位になるため、それらに触れても感電の危険 は小さい。

TN 方式と TT 方式の類似点

TN 方式も TT 方式も、電路が電源側で1点接地されている点が共通している。このため、電路に地絡が発生すると直ちに漏洩電流が流れ、それによって火災、感電の危険がある。従ってこれらの方式では、漏洩電流を常時監視し、検出した時には直ちに電力供給を遮断することが望まれる。漏洩電流は必ず電路の接地箇所を経由するため、設置箇所の電流を監視し、所定の値を超えたら電力供給を遮断することが考えられる。しかし、一つの電源から複数の負荷に電力が供給されている場合にこの方式を採用すると、ある負荷における地絡によって、他の負荷も停電する。これを避けるために、負荷における漏洩電流を負荷毎に監視し、漏洩電流が検知された負荷のみ遮断することが行われる。漏洩電流は、全相の電流合計値、すなわち零相電流として検知される。下図に、各方式の概念図を示し、零相電流の監視箇所を破線で例示した。負荷と大地との間のインピーダンスには、抵抗成分以外に容量成分もある。従って、零相電流を検知する際はその大きさだけでなく位相も勘案する場合があり、詳しくは文献を参照されたい(参考文献 1: 竹谷他)。零相電流ではなく、対地電圧の監視によって地絡を検出する方法もある。

TT 方式において地絡が発生した場合の地絡電流経路は、地絡故障点-PE の接地点-大地-系統接地点であるので、PE の接地が失われていると地絡が発生しても地絡電流が流れず地絡検出が困難になる。これに対して、TN 方式において地絡が発生した場合の地絡電流経路は、地絡故障点-導体-接地点であるので、接地の良否に無関係に地絡を検出できる。したがって、地絡検出の確実性の点では TN 方式が有利である。しかし、TN 方式では地絡した瞬間に大きな地絡電流が発生するのに対し、TT 方式では電流が接地抵抗によって制限される点で火災防止にとって有利である。人体が電路と大地に同時に接触することによって地絡が発生した漏洩電流は人体を貫流するため、その検出感度と遮断速度は人命に直接かかわる。その考え方については、「付録 B.1 太陽光発電に関する感電の危険」に記載した。

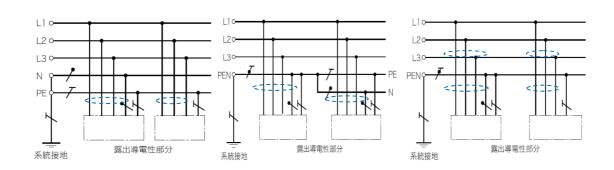


図 2.3-7 TN-S TN-C-S TN-C 方式の図

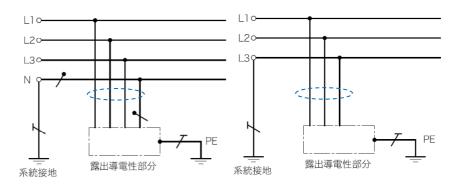


図 2.3-8 TT 方式の図

電路と露出性導電部分(代表的には金属筐体)の間の絶縁抵抗が低下した場合、露出性導電部分の対地電位が大きくなると危険である。電路と露出性導電部分の間の絶縁が徐々に低下し、露出性導電部分の対地電位が徐々に大きくなった場合を想定すると、TN系の方が早期に絶縁低下を検出できる。しかし、TT系で、地絡電流経路に 500Ωの抵抗が寄生していた場合であっても、30mAの零相電流を検出可能であれば、露出性導電部分の対地電位が 15Vに達すれば検出可能であり、安全電圧の範囲内である。ただし、零相電流の検出閾値が 500mA の漏電遮断器を使用している場合は、筐体の対地電位は 250V に達している可能性があり、この様な場合には金属部分に触れると感電する危険がある。

TN 系、TT 系いずれの場合であっても、露出性導電部分の対地電位が上昇して漏電が検出された時は、 当該筐体に供給されている電圧を遮断しなければ安全化されない。ところが、太陽光発電の接続箱を考 えると、漏電が検出されてパワーコンディショナが停止しても、接続箱への電力供給は遮断されていな い場合が殆どである。よって、太陽光発電システムの地絡が検出された時に、盤類筐体に触る前にはそ の対地電位を確認することが必要である。この危険を避けるためには、漏電検出時に、パワーコンディ ショナを停止するだけでなく、ストリングの途中を開放する方法が考えられる。

(7) IT 方式

電路が高抵抗を介して接地されているか、大地から絶縁されているものを言う。露出導電性部分は電気機器の近くに接地されるため、その扱いは TT 系統と似ている。

この方式では、一つの地絡が発生しても漏洩電流は発生しないため、TN系、TT系と異なり、直ちに負荷を電源から遮断する必要は無い。従って、これは、医療機器など運転の継続性が強く求められる場合に適したシステムである。しかしさらに別の地絡が発生すると事故に至るため、運転を継続しながらも地絡を探索して、それを除去することが必須である。IT系における地絡の検出には、上述の零相電流の監視は不可能であり、大地と電路の間に外部から電圧を印加して漏洩電流の発生を観測する等の方法が使用される。

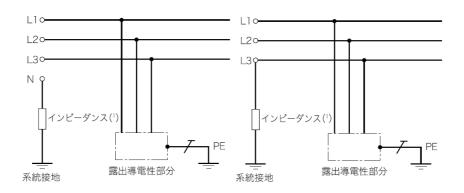


図 2.3-9 IT 方式の図

太陽光発電システムは、交流電気の使用設備に比較して以下の点で複雑である。

- ①電路に、直流部分と交流部分の2種が存在する。
- ②直流電路と交流電路は、相互に絶縁されている場合も、されていない場合もある。
- ③太陽電池モジュールのフレーム、架台、接続箱の金属筐体等が屋外に面的に展開する一方、インバータの筐体等、屋内にも露出性導電部があること。
- ④)既存の接地極を利用する場合も、新たに接地極を設ける場合もあること。

ここでは日本の代表的な接地方式と、米国の代表的な接地方式について説明する。

(8) 日本のトランスレスインバータを使用したシステム(TT系)

直流電路と交流電路が電気的に絶縁されておらず、交流電路が電源側で接地されており、露出性導電部は建物側で接地されているシステムが多い。これらは太陽光発電システム全体としては TT 系であるが、直流電路だけに限定して言えば、IT 系である。

住宅システムでは、単相 3 線の中性線(N)が柱上トランスで接地されている。パワーコンディショナの 筐体は、建物近傍にある接地極によって接地される。太陽電池モジュールのアルミフレームおよび架台 は、既存の接地極を利用して接地される場合(図 2.3-10 左)と、新たに接地極を設けて接地される場合(図 2.3-10 右)がある。

中規模程度の三相システムには、三相スター結線の中性点が電源側で接地されているシステム(図 2.3-11 左)と、三相 Δ 結線の S 相が電源側で接地されているシステム(図 2.3-11 右)が多い。 3 レグのフルブリッジインバータ回路の出力側の何れかの相を接地すると、直流電路の対地電位が商用周波数で変動するが、これを抑制するため、回路を工夫したインバータを使用する場合もある。

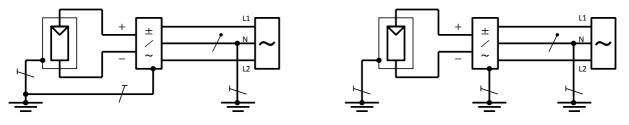


図 2.3-10 日本のトランスレスインバータを使用したシステム、単相(TT系)の図

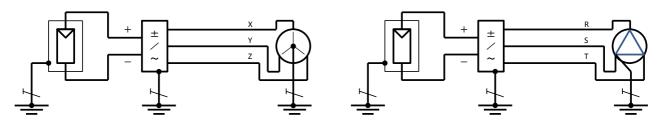


図 2.3-11 日本のトランスレスインバータを使用したシステム、3 相(TT 系)の図

上図では、太陽電池アルミフレームの接地とインバータ筐体の接地を、別の接地極で行う様に描いたが、共通の接地極を使用しても構わない。

これら TT 系において太陽電池アレイの充電部に人が接触して地絡を発生させた場合は、電源側の接地点を帰路とする漏洩電流が人体を通過する。この時インバータが零相電流を検出して停止することで、人体を通過する電流は停止させられる。しかし、そのための閾値は多くの家庭用インバータで 100mA程度、インバータ停止までの時間は数十 ms~数百 ms であることから、人間の感電限界に照らし合わせた時、安全と言い切ることはできない。従って、TT 系の太陽電池アレイに人が触れることは避けるべきである。太陽電池アレイに触れざるを得ない場合は、まず絶縁を確認すること、絶縁確認のために金属部に触れる時は手袋をすることが必要である。

(9) 日本のトランス付インバータを使用したシステム(IT系)

直流電路と交流電路が電気的に相互に絶縁されている場合(図 2.3-12 左)や、直流電路と交流電路が電気的に絶縁されていなくても、交流電路が非接地の場合(下図右)は、IT系になる。

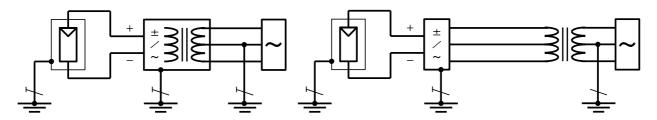


図 2.3-12 本のトランス付インバータを使用したシステム(IT系)

IT 系においては、1線が地絡しても火災にはならない。しかし、たとえ第一地絡であっても、それが人体によって引き起こされる場合については、感電の観点から注意が必要である。太陽電池アレイの充電部と大地に人が同時に接触した場合、当該充電部と大地は人体経由で接触して等電位になる。ところが、人が接触する前の当該充電部の電位が大地とは異なっていた場合、等電位になる過程では人体に一時的に電流が流れる。その電流値の最大値は、接触する前の当該充電部の対地電位を人体抵抗で除したものであり、その継続時間の目安となる時定数は、太陽電池アレイの対地静電容量と人体抵抗との積である。たとえば、接触前の対地電位が 200V の箇所に、人体抵抗 1000 Ω の人が接触した場合、突入電流は 200mA に達し、もし対地静電容量が 1000 Ω F であれば、時定数は 1s に達することになり、感電死する恐れがある。また、対地静電容量がこれよりも小さく、電流継続時間が短くても、触れた瞬間に人間の心臓が受攻期に入っていた場合は、心室細動の危険がある。従って、IT 系といえども、太陽電池ア

レイへの接触は避けるべきである。この危険は、太陽電池アレイの対地静電容量が大きくなると増加するため、対地静電容量が大きくなるアレイについては、触れざるを得ない場合は、絶縁手袋などを利用することが必要である。。太陽電池の対地静電容量の値については、「付録 B.2.2 直流アークの火災危険」に例を挙げた。)

(10) 米国のトランス付インバータを使用したシステム(TN系)

米国においては、直流電路が接地される。露出性導電部は直流電路と等電位化されて、これらは一つの接地極で接地される。図 2.3-13 左上は、太陽電池の負極が接地された場合を、図 2.3-13 左下は、太陽電池の正極が接地された場合を、図 2.3-13 右は、太陽電池の中点が接地された場合を、それぞれ表している。いずれの図においても、太陽電池と接地極の間にはヒューズが配置されている。これは、太陽電池の何れかの箇所で地絡が発生した際には、ヒューズが溶断することによって、地絡を検出するとともに地絡電流を遮断するためである。詳しくは付録 B. 2.2 直流アークの火災危険を参照されたい。ヒューズの代わりに、過電流遮断器を設けることもできる。なお、図 2.3-13 右の様に、太陽電池アレイの中点を接地するシステムは、バイポーラーアレイと呼ばれ、対地電圧の絶対値を下げるために米国では広く採用されている。

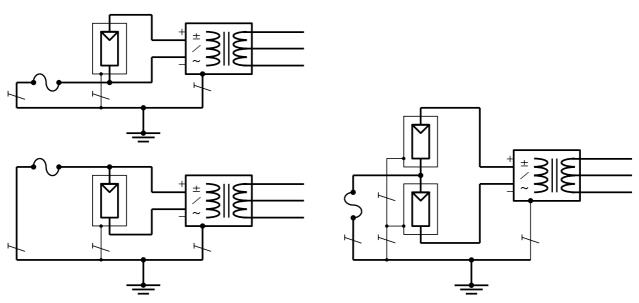


図 2.3-13 米国のトランス付インバータを使用したシステム(TN 系)

(11)法令と規格について

国内の解釈法令である電技解釈は、TT系を念頭に作成されている。一方、欧州を中心として作成された電気設備の国際規格(IEC60364シリーズ)はTN系を中心とする規格体系である。電技解釈 218条は、同解釈の第3条~第217条ではなく、JIS化されたIEC60364シリーズに従うことを許容しているが、この両者の混在は認めていない。そしてその理由は、接地方式の相違による思わぬ事故を防ぐためであることが示されている(電気施設技術基準国際化調査(電気設備)報告書電気設備学会

IEIEJ-C-0318(2012))_o

電技解釈 218 条には、許容された JIS 化された IEC60364 シリーズ中の 1 規格として、太陽光発電に関する規格(JIS C 0364-7-712)も示されている。しかし上記のとおり、これに従う場合は従来の電技解釈

との混在はできず、全て JIS 化された IEC60364 シリーズ(JIS C 0364・シリーズ)に従わなければならない。

【参考2】電路絶縁に関係する法令等

(1) 絶縁原則について

省令第5条(電路の絶縁)には、太陽光発電に限らず大前提である以下の記述がある。

電路は、大地から絶縁しなければならない。ただし、構造上やむを得ない場合であって通常予見される使用形態を考慮し危険のおそれがない場合、又は混触による高電圧の侵入等の異常が発生した際の危険を回避するための接地その他の保安上必要な措置を講ずる場合は、この限りでない。

2 前項の場合にあっては、その絶縁性能は・・・絶縁破壊による危険のおそれがないものでなければならない。」

本条第一項は、やむを得ない場合または保安上必要な場合を除き、電路は絶縁されるべきことを述べた条項である。

電技解釈第13条には以下の記述がある。

電路は、次の各号に掲げる部分を除き大地から絶縁すること。

- 一 この解釈の規定により接地工事を施す場合の接地点
- 二 次に掲げるものの絶縁できないことがやむを得ない部分

イ 第173 条第7 項第三号ただし書の規定により施設する接触電線、第194 条に規定するエックス線発生装置、 試験用変圧器、電力線搬送用結合リアクトル、電気さく用電源装置、電気防食用の陽極、単線式電気鉄道の帰 線(第201 条第六号に規定するものをいう。)、電極式液面リレーの電極等、電路の一部を大地から絶縁せずに 電気を使用することがやむを得ないもの

ロ 電気浴器、電気炉、電気ボイラー、電解槽等、大地から絶縁することが技術上困難なもの」

本条は、省令第 5 条に記載された絶縁原則とその例外を示すものである。ここには太陽電池アレイを接地しても良いとする緩和規程は示されていない。しかし、省令第 5 条には、「保安上必要な措置を講ずる場合」が示されており、保安目的で接地を行う場合は接地が認められると考えられる。(ただし、電技解釈第 218 条 "国際規格の取り入れ"に従って構内が全て 0364 系にて施工される場合は、本文書の対象外である。)

(2) 絶縁性能について(絶縁抵抗値および絶縁耐圧)

①太陽光発電システムに限らず、一般的に低圧電路の縁抵抗値の要件は、省令第 58 条および解釈第 14 条第 2 項に示されている。

	日137.56 木 公	
	電路の使用電圧の区分	絶縁抵抗値
	対地電圧(接地式電路においては電線と大地と	$0.1 \mathrm{M}\Omega$
300V	の間の電圧、非接地式電路においては電線間の	
以下	電圧をいう。以下同じ。)が 150V 以下の場合	
	その他の場合	0.2M Ω

省令第58条 表

電技解釈第14条第2項

絶縁抵抗測定が困難な場合においては、当該電路の使用電圧が加わった状態における漏えい電流が、1mA以下であること。

電技解釈第 14 条第 2 項は、省令第 58 条とほぼ同程度絶縁抵抗値を求めている。これらは、低圧電路 の絶縁抵抗値の要求値を具体的に定めたものであり、太陽光発電システムであれば、各ストリングが本 表の要求を満たすことが求められる。

これらの値は、当該電路中の対地電位が低い個所であっても緩和規定が適用されるものではない。すなわち、上記「[1]検出不感帯が無いこと」は法令を満たしていることを確認するために必要である。なお、電技令 58 条には絶縁抵抗値を担保する具体的な手段は定められていない。また電技解釈(平成 26 年 7 月 18 日改正)第 36 条には、地絡遮断装置を施設するべき義務が示されているが、その仕様に関する要件は示されておらず、絶縁抵抗値の監視が義務付けられている訳ではない。さらに同条の解釈解説によれば、定格電流感度 15~50mA 程度の漏電遮断器が示唆されている。従って、検出不感帯の無い地絡故障検知装置の設置義務は明記されていない。しかしながら、地絡が看過されそれによって火災等の事故が発生した場合、設備の所有者等は電技令 58 条に反した責を問われる懸念がある。ゆえに検出不感帯の無い地絡故障検知装置の設置は重要である。

②一方、絶縁耐圧に関しては、電技令第5条第2項に基本的な考え方として、正常に設備が稼働している時だけでなく、事故時に想定される異常電圧を考慮しなければならないことが示されている。

前項の場合にあっては、その絶縁性能は、第二十二条及び第五十八条の規定を除き、事故時に想定される異常電圧を 考慮し、絶縁破壊による危険のおそれがないものでなければならない。

具体的には、解釈第 16 条第 5 項に太陽電池モジュールの耐電圧が、解釈第 16 条第 6 項第 5 号にインバータの耐電圧が示されている。

解釈第16条第5項には、太陽電池モジュールの絶縁耐圧について以下の記載がある。

太陽電池モジュールは、次の各号のいずれかに適合する絶縁性能を有すること。

- 一 最大使用電圧の 1.5 倍の直流電圧又は 1 倍の交流電圧 (500V 未満となる場合は、500V) を充電部分と大地との間に連続して 10 分間加えたとき、これに耐える性能を有すること。
- 二 使用電圧が低圧の場合は、日本工業規格 JIS C 8918 (1998) 「結晶系太陽電池モジュール」の「6.1 電気的性能」 (JIS C 8918 (2005) にて追補) 又は日本工業規格 JIS C 8939 (1995) 「アモルファス太陽電池モジュール」 (JIS C 8939 (2005) にて追補) の「6.1 電気的性能」に適合するものであるとともに、省令第58条の規定に準ずるものであること。

上記第二号が引用する JIS C8918 は、最大システム電圧×2+1000V、1 分間の試験を求めている。これは、太陽電池モジュールの認証において用いられている JIS C8990、8991 と同じ条件である。

上記第一号は、これよりも電圧は低いが、時間が 10 倍に延長されている。 解釈第 16 条第 6 項第 5 号には、パワーコンディショナの絶縁耐圧について以下の記載がある。

逆変換装置が、太陽電池モジュールに接続する低圧の直流電路に施設されるものである場合は、電気学会電気規格調査会標準規格 JEC-2470(2005)「分散形電源系統連系用電力変換装置」の「6.2 一般試験」の交流耐電圧試験により絶縁耐力を有していることを確認したものであって、常規対地電圧を電路と大地との間に連続して10分間加えて確認したときにこれに耐えること。

これらを満たす機器を用いて設備を構築することが求められる。これは、機器選定、竣工検査および 定期検査において考慮されるべきことである。しかし、絶縁耐圧を頻繁に検査することは、設備を劣化 させる懸念があるので、常設される保護監視装置によって絶縁耐圧を試験することは、本文書では推奨 しない。

③ 地絡保護とその課題について

電技令第15条(地絡に対する保護対策)には以下の記述がある。

電路には、地絡が生じた場合に、電線若しくは電気機械器具の損傷、感電又は火災のおそれがないよう、地絡遮断器 の施設その他の適切な措置を講じなければならない。ただし、電気機械器具を乾燥した場所に施設する等地絡による 危険のおそれがない場合は、この限りでない。

本条は、地絡による事故の恐れを低減するため、地絡遮断器等の設置を定めた条項である。本条の緩和規程は、「地絡による危険のおそれがない場合」であり、屋外に設置される太陽光発電システムにあっては緩和規程が適用されるとは考え難い。

また、電技令第64条(地絡に対する保護措置)には以下の記述がある。

ロードヒーティング等の電熱装置、プール用水中照明灯その他の一般公衆の立ち入るおそれがある場所又は絶縁体に 損傷を与えるおそれがある場所に施設するものに電気を供給する電路には、地絡が生じた場合に、感電又は火災のお それがないよう、地絡遮断器の施設その他の適切な措置を講じなければならない。

これより、一般公衆が触れる可能性がある場所に太陽電池アレイを設置する場合は、地絡遮断器の施設その他の適切な措置を講じなければならない。

電技解釈第36条には以下の記述がある。

金属製外箱を有する使用電圧が60V を超える低圧の機械器具に接続する電路には、電路に地絡を生じたときに自動的 に電路を遮断する装置を施設すること。ただし、次の各号のいずれかに該当する場合はこの限りでない。・・・・ 七 機械器具を太陽電池モジュールに接続する直流電路に施設し、かつ、当該電路が次に適合する場合

イ 直流電路は、非接地であること。

- ロ 直流電路に接続する逆変換装置の交流側に絶縁変圧器を施設すること。
- ハ 直流電路の対地電圧は、450V以下であること。

. . . .

- 2 電路が次の各号のいずれかのものである場合は、前項の規定によらず、当該電路に適用される規定によること。
 - 一 第3 項に規定するもの
 - 二 第143 条第1 項ただし書(以下に抜粋)の規定により施設する、対地電圧が150V を超える住宅の屋内電路

=

- 3 高圧又は特別高圧の電路と変圧器によって結合される、使用電圧が 300V を超える低圧の電路には、電路に地 絡を生じたときに自動的に電路を遮断する装置を施設すること。ただし、当該低圧電路が次の各号のいずれかの ものである場合はこの限りでない。
 - 一 発電所又は変電所若しくはこれに準ずる場所にある電路
 - 二 電気炉、電気ボイラー又は電解槽であって、大地から絶縁することが技術上困難なものに電気を供給する 専用の電路
- 4 高圧又は特別高圧の電路には・・・・

. . . .

本条第一項は、金属製外箱を有する機器に電路を接続する場合には、地絡遮断装置を施設するべきことを示している。しかし、太陽光発電にあってはケーブル、モジュール裏面等も地絡する可能性があるため、接続箱、パワーコンディショナを全て樹脂筐体に収めた場合であっても、地絡遮断装置の設置が必要と考えられる。

本条第1項第7号には、対地電圧450V以下の絶縁システムは地絡遮断装置の設置義務を免れることが記載されている。この理由を同条解釈解説は、「直流電路に地絡を生じても地絡電流の帰路が構成されず、地絡電流が継続して流れないため火災の発生のおそれがない」と説明している。しかし、複数の地絡を生じた場合には、地絡電流が継続して流れしかもその遮断が困難である恐れがあるため、本号は再考されるべきものである。

本条第 2 項第 2 号には、前項の緩和規定に対する例外(すなわち、緩和を受けない)場合として、「第 143 条第 1 項ただし書の規定により施設する、対地電圧が 150V を超える住宅の屋内電路」が示されている。同条第 3 号から、対地電圧 150V を超える住宅用 PVS では、地絡遮断装置設置義務が緩和されないことがわかる。大地と絶縁されたシステムの場合、対地電圧の測定は技術的に困難であるが、極間電圧が 150V を超えている場合は、対地電圧が 150V を超えている可能性がある。

電技解釈解説 第36条には以下の記述がある。

低圧の金属製外箱を有する機械器具に接続する電路に、漏電遮断器等の地絡遮断装置を施設することとしている。・・・・、 漏電遮断器等の感度については、特に示していないが、分岐回路に取り付けるものでは不必要な動作を避けるため、 電流動作型のものにあっては定格感度電流が15~50mA 程度のものが一般的に用いられている。

本条には、地絡遮断装置として実際に使用されている漏電遮断器の感度が述べられている。しかし、 ここに示された感度では、省令第58条および解釈第14条に定められた絶縁抵抗値を担保することはで きない。すなわち、電技解釈に従うだけでは省令58条を担保することはできず、そのための方法は別 途検討する必要があることが分かる。このため、家庭内の設備は、4年に1回の絶縁検査が行われている。しかしながら、太陽光発電設備は「付録 B.2.2 直流アークの火災危険」で説明したとおり、これよりも高頻度の絶縁検査が必要であるにもかかわらず、4年に1回の検査も行われていない場合があり、法令順守の観点からも、現状には課題が残されている。

④パワーコンディショナの試験規格

電気安全環境研究所(JET)が定めたパワーコンディショナの試験法(小型分散型発電システム用系統連系保護装置等の試験方法通則)には、直流地絡検出機能の試験法が含まれていない。また、パワーコンディショナの試験法に関する規格(JIS C8962)には地絡保護試験方法が含まれてはいるものの、試験条件、合否判定基準または達成レベル判定基準が記載されていない。直流地絡検出機能がパワーコンディショナに内蔵されている場合、外付けの場合のいずれにおいても、地絡検出機能の試験法を明確にして規格を定めることが今後必要である。

2.4 雷害保護設計

【目的】雷による火災事故の発生を防ぐため

【設計指針】

- [3] 受雷部システム(避雷針、棟上導体等)は、太陽電池アレイへの影の影響を考え適切に配置すること。
- [4] 太陽光発電設備内は、全ての設備を等電位ボンディングし、雷サージによる電位差を極力軽減すること。
- [5] SPD は、被保護機器の耐電圧値を把握し、SPD の電圧防護レベルがそれ以下になるように選定すること。
- [6] 配線は、雷サージの影響を遮蔽できるように、金属配管を利用することや、シールドケーブル を用いること、誘導ループ面積を極力小さくすることが望ましい。
- [7] 太陽光発電の直流電源に用いる SPD は、SPD 劣化時に絶縁劣化した際に、焼損することがないような機能を有したものが望ましい。
- [8] SPD は、メンテナンスを行なえるような箇所に設置することが望ましい。

【設計指針 解説】

$[1]\sim[6]$

総合的な雷保護システムは、建築物・工作物等と人命の雷保護(LPS)、電気電子設備の雷保護(LPMS)により構成される。

LPS は、外部 LPS (受雷部システム、引下げ導線システム、接地システム)、内部 LPS (等電位ボンディング等)で構成される。

LPMS は、主に SPD を用いた雷サージ低減設計、等電位ボンディング、遮蔽等による雷サージ低減手法で構成される。

太陽光発電設備の雷保護の基本的な考え方は、突針などの受雷部(外部 LPS)によって直撃雷から 設備を保護すること、電気電子機器を雷サージから保護するために、各機器に SPD(Surge Protective Device: サージ防護デバイス)を設置する(電気電子機器の雷保護システム)こと、及び設備内の等 電位ボンディング(等電位化)を行なうことである。

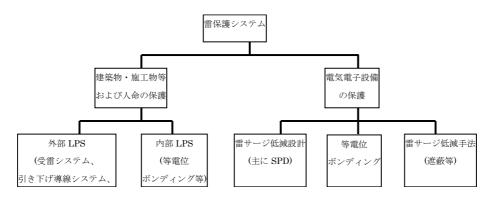


図 2.4-1 雷保護設計の体系

①建築物・工作物等と人命の雷保護 (LPS)

LPS の必要性について法規では、以下とされている。

- ・建築基準法第33条および建築基準法施行令第129条の14は、太陽光発電設備を含めた建物の高さが20mを超える場合は、外部雷保護システムを設置し、建物および太陽光発電設備を直撃雷から保護すること
- ・建築基準法施行令第129条の15、建設省告示1425号および国交省告示650号では、JIS A4201(1992)、またはJIS A4201(2003)のいずれかに適合した外部電保護システムとすること。

メガソーラー設備などの地上に設置する太陽光発電システムは、20m を超える高さに設置されることは少ない。しかしながら、地上設置においても、メガソーラー設備などの太陽光発電システムは、他の電気設備と比較して面積が大きい場合、直撃雷を受ける可能性が高いため、外部 LPS を積極的に設置することを推奨する。

建築基準法施行令 第129条の14

法第33条の規定による避雷設備は、建築物の高さ20mをこえる部分を雷撃から保護するように設けなければならない。

建築基準法施行令 第129条の15

前条の避雷設備の構造は、次に掲げる基準に適合するものとしなければならない。

- 一 雷撃によって生ずる電流を建築物に被害を及ぼすことなく安全に地中に流すことができるものとして、国土交 通大臣が定めた構造方法を用いるもの又は国土交通大臣の認定を受けたものであること。
- 二 避雷設備の雨水等により腐食のおそれのある部分にあつては、腐食しにくい材料を用いるか、又は有効な腐食 防止のための措置を講じたものであること。

平成 12 年 5 月 31 日建設省告示第 1425 号

H12 建告 1425 建築基準法に基づく告示

雷撃によって生ずる電流を建築物に被害を及ぼすことなく安全に地中に流すことができる避雷設備の構造方法を定める件

建築基準法施行令(昭和 25 年政令第 338 号)第 129 条の 15 第一号の規定に基づき、雷撃によって生ずる電流を建築物に被害を及ぼすことなく安全に地中に流すことができる避雷設備の構造方法を次のように定める。

雷撃によって生ずる電流を建築物に被害を及ぼすことなく安全に地中に流すことができる避雷設備の構造方法は、 日本工業規格 A4201(建築物等の避雷設備(避雷針))-1992 に適合する構造とすることとする。

平成 17 年 国土交通省告示第 650 号

国土交通省告示第 650 号 雷撃によって生ずる電流を建築物に被害を及ぼすことなく安全に地中に流すことができる避雷設備の構造方法を定める件

建築基準法施行令(昭和 25 年政令第 338 号)第 129 条の 15 第 1 号の規定に基づき、平成 12 年建設省告示第 1425 号の一部を次のように改正する。

「日本工業規格 A4201 (建築物等の避雷設備 (避雷針)) -1992」を「日本工業規格 A4201 (建築物等の雷保護) -2003 に規定する外部電保護システム」に改める。

附則

- この告示は、平成 17 年 8 月 1 日から施行する。
- 二 改正後の平成 12 年建設省告示第 1425 号の規定の適用については、日本工業規格 A4201 (建築物等の避雷設備 (避雷針)) -1992 に適合する構 造の避雷設備は、日本工業規格 A4201 (建築物等の雷保護) -2003 に規定する外部電保護システムに適合するものとみなす。

②電気電子設備の雷保護 (LPMS)

LPMS は、主に太陽光発電設備内の電位差を低減するために、等電位ボンディングを行なうこと、SPD による雷サージ低減を行なう、遮蔽等により雷サージのケーブルへの影響を軽減することにより構成される。以下に詳細ついて説明する。

(1)等電位ボンディング

雷サージによって発生する電位差を低減することが雷サージ対策の基本である。

太陽光発電設備全体の電位差を低減するためには、設備全体の等電位ボンディングを行なう必要がある。等電位ボンディングは設備内全ての金属製工作物間を導体等を用いてボンディングすることである。直接ボンディングができないような電源線及び通信・信号線などは、SPDを介して接続することで等電位ボンディングを行うことができる。異種接地間で地絡電流、ノイズ、責任分解等の問題があり、直接ボンディングできない接地間は接地間用のSPDを用いて等電位ボンディングを行なう必要がある。太陽光発電設備の太陽電池アレイ架台等が金属であり電気的な接続に問題なければ等電位ボンディング用の部材(ボンディング用バー)として積極的に利用することでコストメリットが出るため、積極的に利用することを推奨する。太陽光発電設備とそれ以外の設備との等電位ボンディングについても、施設全体の雷保護を考慮した場合は検討する必要がある。

(2)SPD (Surge Protective Device: サージ防護デバイス)

SPD は雷サージによる過電圧、過電流から電気電子機器を保護する機能を有した装置である。 SPD による雷サージ保護方法においては、他の設備の雷サージ保護方法と大きな差異は無いが、 太陽電池アレイからの出力電源は、直流電源を使用していることから、PV の直流電源に適用できる SPD を設置する必要がある。 SPD は費用対効果を考慮し設置する場合がある。 特に高価なパワーコンディショナおよび雷サージに対して脆弱な電子機器は積極的に SPD を設置し雷保護することを推奨する。

a. SPD の設置個所

LPZ(雷保護ゾーン)を設定し電磁界の影響を考慮した設計を行なう場合, SPD は LPZ の各境界に設置する必要がある。LPZ を考慮せずに SPD を機器の近くに設置した場合でも雷サージは十分に低減できる。SPD は、被保護機器の雷サージが侵入する可能性がある各回線(AC, DC電源ケーブルや通信・信号ケーブル等)に設置する。SPD は被保護機器からできるだけ近い位置に設置する。図 2.4-2 に設置例を示す。直流の接続箱と太陽電池アレイ間のケーブルが 10m以上ある場合, SPD は、直流の接続箱と太陽電池アレイ間のケーブルの各装置の直近に設置する。ここで、直流の接続箱の位置は、太陽電池アレイまでの配線が 10m 以内になるように配

置することで、SPD の設置数量を減らすことができる。受配電盤と AC 集電箱、パワーコンディショナは、近接(10m 以内)しており同じ建物内である場合、受配電盤に設置する SPD で保護できると考えられる。電気室の受配電盤部に取り付ける SPD は、各変圧器のバンクごとに1セット設置すれば保護できる。接続・集電箱等において、SPD が動作した際に発生するブレーカやヒューズなどの遮断器の不要動作を防ぎたい場合、SPD 動作時に遮断器に雷電流が流れないようブレーカの外線側に配置する。SPD を設置する際は、SPD の省略の検討や SPD 間の協調等の検討を行う必要があり、パワーコンディショナ等の各種 PV システム設備の装置内にサージ防護素子(バリスタ等)や SPD の有無を、機器メーカー等に確認する必要がある。また、SPD が性能以上の雷サージにより損傷した際、他設備へ影響を与える可能性があるため、SPD は単独で SPD 盤等に収容することを推奨する。

b. 太陽光発電設備に適用する SPD の種類

交流ライン/直流ライン/計測ラインの適用回線仕様に合わせて SPD を選定し設置する必要がある。特に、PV の直流ラインに設置する SPD は短絡破壊時の遮断性能に留意する必要がある。PV アレイからパワーコンディショナまでの DC 電源線は、LPS へ雷撃があった際に直撃電電流が分流する可能性があるが、一般的に直撃電電流の大部分は鉄骨や引下げ導線に分流するものと考えられるため、基本的には DC ラインへの SPD はクラス II SPD (誘導雷対応 SPD) を選定する。ただし、構造体利用引下げ導線を使用しない場合など、LPS の条件によっては DC ライン側へ多くの直撃電電流が分流することが想定される場合、および SPD の長寿命化や高信頼性を求める場合、クラス I SPD (直撃雷対応 SPD) を選定する。太陽光発電設備の直流用に使用する SPD の推奨性能を表 X、太陽光発電設備用 SPD の例を図 12 に示す。A 交流用、通信用 SPD の推奨性能は、「雷保護システム標準設計」内に記載内容を参照するものとする。太陽光発電設備のインパルス耐電圧は、被保護機器のインパルス耐電圧を把握し、適切な性能の SPD を選定することが重要である。インパルス耐電圧は、機器ごとに各メーカーに確認する必要があるが、参考として、JIS に記載されている太陽光発電設備のインパルス耐電圧値について、表 2.4-1、2.4-2 に示す。

通信・信号線側も電源線と同様の考え方で、基本的には誘導雷対応のSPD(カテゴリC2)を選定し、直撃雷電流の分流が多い回線については直撃雷対応のSPD(カテゴリD1)を選定する。

また、SPD 劣化時に絶縁劣化した際に、焼損することがないような機能を実現する方法としては、SPD に直列に過電流遮断器を具備することが挙げられる。これは分離器として、SPD メーカーからセットで購入することが可能である。

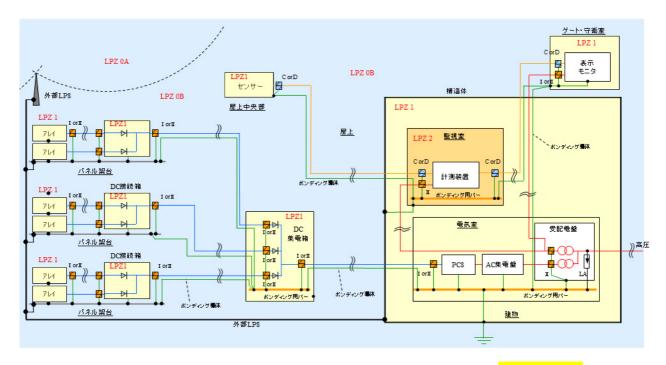


図 2.4-2 SPD 及び等電位ボンディングによる雷サージ対策の概要 (参考文献)

表 2.4-1 太陽光発電設備用 SPD の推奨値 (参考文献)

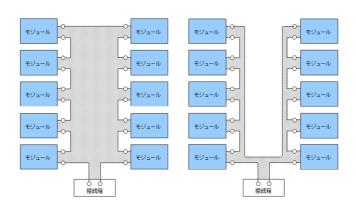
2(2.11)		
項目	推奨値	備考
最大連続 使用電圧 Uc	1.2×Uocstc以上	Uocstc:標準試験条件での開 回路電圧
電圧防護 レベル Up	機器のインパルス耐圧, SPD リード線,分離器の 電圧降下を 考慮して選定	表X,X参照
公称放電電流 In	5kA以上	LPS がある場合,想定雷撃電
インパルス電流 Iimp	5∼33kA	流や分流を考慮し決定

表 2.4-2 JIS C 8992-2 によるインパルス耐電圧

最大システム電圧	インパルス耐電圧 (V)
(V)	適用等級 A
100	1500
150	2500
300	4000
600	6000
1000	8000

※適用等級 A:人の接近がある場所

参考文献: JIS C 8992-2 (2010) 太陽電池モジュールの安全適格性確認―第2部: 試験に関する要求事


表 2.4-3 その他の JIS におけるインパルス耐電圧 (参考文献)

規格名	項目	インパルス 耐電圧
JISC8918 (1998)	太陽電池モジュールの インパルス耐電圧	4.5kV
JIS C8951 (2011)	太陽電池アレイの インパルス耐電圧	$4.5 \mathrm{kV}$
JIS C8962 (2008)	パワーコンディショナ試験の インパルス耐電圧	5kV

(3) 遮蔽・配線ルート

電源線や通信・信号線は、金属製の電線管または配線ダクトやシールドケーブルを使用し、遮蔽することで、雷による電磁界の影響を軽減することができる。また、配線上の誘導ループ面積を小さくすることで、誘導サージ電圧を低減することができる。太陽電池モジュール間配線において、誘導ループ面積を小さくした配線ルート事例を図 2.4-3 に示す。

また、太陽光発電設備は、雷電磁インパルスの影響を受けやすい LPZ0B (LPZ:Lightning Protection Zone: 雷保護ゾーン) に設置される設備で、さらにモジュール間の配線によって大きな閉ループが 形成される場合があることから、ワイヤリング等による誘導対策が重要となる

誘導ループが大きい配線 誘導ループが小さい配線

図 2.4·3 太陽電池モジュールの配線による誘導ループの違い (参考文献)

参考文献:

JIS Z 9290-4 (2009) 雷保護-第4部:建築物内の電気及び電子システム

IEC 62305-4 (2010) Protection against lightning - Part 4: Electrical and electronic systems within structures JIS C 5381-12 低圧配電システムに接続するサージ防護デバイスの選定及び適用基準 JIS C5381-22 通信、信号回線に接続するサージ防護デバイスの選定及び適用基準

JLPA 技術レポート 第 17 号

【紹介事項】

- [5] SPD は大きく分けると直撃雷に対応したもの(電源回路用はクラス I、通信・信号回路用はカテゴリ D1)と誘導雷(間接雷)に対応したもの(電源回路用はクラス II、通信・信号回路用はカテゴリ C2)に分かれており、想定する雷サージの大きさによって選定する方法がある。
- [6] シールドケーブルを使用することやケーブルを遮蔽効果のある金属配管に収容することで、雷による電磁界の影響(雷サージの発生)を軽減することができる。
- [7] 配線を雷サージの影響を受けにくいルートとする (誘導ループ面積を最小にする)。光ファイバ は絶縁体であるため雷サージが流れることはない。
- [8] 通信回線を光ファイバ化することは、非常に雷保護効果が高い。
- [9] 雷サージの侵入経路は、落雷する箇所よって雷サージの侵入経路は大きく異なるが、特に建物 (避雷針等の LPS) への直撃雷や近傍雷があると、落雷箇所周辺に発生する電磁界の影響により、様々な回線から雷サージが侵入してくる可能性がある。遠方に落雷した際は、建物から外部に延びている配電線、電話線等の導電性のものが遠方まで延びていれば、それらを通して雷サージが侵入する可能性がある。また、接地 (大地) から雷サージが侵入することもある。
- [10] 雷を避雷針に導くのではなく、落雷自体を抑制することにより雷害を防ぐ方法もある。

【紹介事項 解説】

[8] 電源回路用 SPD のクラスは JIS C5381-1 に、通信・信号回路用 SPD のカテゴリは JIS C5381-21 に示されている。

[9]~[12]解説省略

[13] 雷を避雷針に導くのではなく、落雷自体を抑制することにより雷害を防ぐ方法もある。例えば、 落雷抑制システムとして、新防雷システムや PDCE 避雷針などがある。

- 2.5 個別要素設計
- 2.5.1 取り付け場所および電気工事

【目的】

取りつけ場所、電気工事を適切に行い、感電・火災の恐れを低減するため。

【設計指針】

- [9] 電技解釈 第 38 条に当てはまる物件の場合、太陽光発電設備は、さく/へいなどを設けるとともに、安全確保のために必要な表示を行なうこと。
- [10] 電技解釈 第 29 条に示すとおり、太陽光発電設備の電路に施設する金属製のアレイ用支持物、金属製の外箱、金属性のモジュール外枠、および電線を保護する金属管等は、接地工事を施すこと。

①高圧: A 種接地工事

②300 V 以下の低圧のもの : D 種接地工事

③300∨を超える低圧のもの : C 種接地工事

- [11] 各接続工事は、極性を間違えないように行なうこと。
- [12] 設置する機器は、メーカーのマニュアル等で定められた環境、および使用場所や条件を満足した取りつけを行うこと。
- [13] 設置する機器は、放熱を考慮し、また保守点検に支障のないよう周囲にスペースを設けて設置すること。
- [14] 取り付け面は、機器本体重量に耐える強度であることを確認すること。また必要に応じ補強を行なうこと。
- [15] アレイ出力開閉器箱、接続箱(中継端子箱)など外箱を設ける場合、それらの機器は、使用状態において内部に機能上障害となるような浸水や結露が生じない構造とすること。
- [16] 電技解釈 第 143 条に示すとおり、住宅に施設する太陽電池モジュールの負荷側の屋内電路 (太陽電池モジュールからパワーコンディショナに至る部分の屋内電路)の対地電圧は、直流 450 V 以下とすること。
- [17] 電技解釈 第 151 条に示すとおり、電源回路の充電部は、露出しないこと。
- [18] 電技解釈 第 156 条に示すとおり、主回路の配線をケーブル工事によらない場合は、合成樹脂管工事、金属管工事または可とう電線管工事とすること。
- [19] 太陽光発電設備に至る回路は、他の回路と容易に識別できるように、ブレーカ(過電流遮断器) その他の器具の近い箇所に、太陽光発電設備に至る回路であることを明瞭に表示することが望ましい。
- [20] 50kW 未満のシステム(電技解釈 第 200条)は電技解釈 第 38条に示す、さく/へいなどを設ける必要はないが、一般人が容易に立入る可能性がある場所の太陽光発電設備は、さく/へいなどを設けることが望ましい。

【設計指針 解説】

[1] さく、へい等の設置は、太陽光発電設備への安易な接触を防止することができるため、一般人等に

対する感電等の恐れを低減できる。また、安全確保に必要な表示を行うことで、一般人以外の人も 含めた人への注意喚起となる。

なお、電技解釈第 38 条には以下の記述があり、本条項に当てはまる物件は、法律上の義務的事項 となっている。

電気設備の技術基準の解釈 第38条(平成26年7月18日改正版)

第38条高圧又は特別高圧の機械器具及び母線等(以下,この条において「機械器具等」という。)を屋外に施設する発電所又は変電所,開閉所若しくはこれらに準ずる場所(以下,この条において「発電所等」という。)は,次の各号により構内に取扱者以外の者が立ち入らないような措置を講じること。ただし,土地の状況により人が立ち入るおそれがない箇所については、この限りでない。

- ー さく、へい等を設けること。
- 二 特別高圧の機械器具等を施設する場合は、前号のさく、へい等の高さと、さく、へい等から充電部分まで の距離との和は、38-1 表に規定する値以上とすること。
- 三出入口に立入りを禁止する旨を表示すること。

四 出入口に施錠装置を施設して施錠する等, 取扱者以外の者の出入りを制限する措置を講じること。

38-1表

充電部分の使用電圧の区分	さく、へい等の高さと、 さく、へい等から充電部分までの距離との和
35,000V以下	5m
35,000Vを超え160,000V以下	6m
160,000V超過	(6+c) m

(備考) cは、使用電圧と160,000Vの差を10,000Vで除した値(小数点以下を切り上げる。)に0.12を乗じたもの

2 高圧又は特別高圧の機械器具等を屋内に施設する発電所等は、次の各号により構内に取扱者以外の者が立ち入らないような措置を講じること。ただし、前項の規定により施設したさく、へいの内部については、この限りでない。

一 次のいずれかによること。

イ堅ろうな壁を設けること。

 μ さく、 μ なく、 μ ない。

二 前項第三号及び第四号の規定に準じること。」

電技解釈解説第38条に以下の記述がある。

電気設備の技術基準の解釈の解説 第38条(平成26年7月18日改正版)

第二号は、従来、風力発電所で認められていた施設方法について、その他の設備でも同様に施設できることを明確にするため、〇23 解釈で追加したものである。中小工場等の受電場所又は風力発電所若しくは太陽電池発電所等に施設する高圧又は特別高圧の機械器具等を、イから二により施設すれば、第1項及び第2項で規定するさく、へい等の施設や取扱者以外の者の出入りを制限する措置を講じなくてもよいこととしている。具体的には、高圧又は特別高圧の機械器具等は、キュービクル等に収納して施錠するか、人が容易に触れるおそれがないように架台の上に

施設し、いずれの場合においても危険である旨を表示することとしている。また、機械器具相互 60 を接続する電線 については、電線路と同等に施設することとしており、取扱者以外の者が発変電所等の構内に立ち入った場合でも、 保安が確保されるようにしている

[2] 接地工事は、地絡事故が発生した場合の感電を保護する上で重要である。電技解釈 第 29 条に以下の記述がある。

電気設備の技術基準の解釈 第29条(平成26年7月18日改正版)

【機械器具の金属製外箱等の接地】(省令第10条,第11条)

電路に施設する機械器具の金属製の台及び外箱(以下この条において「金属製外箱等」という。)(外箱のない変圧 器又は計器用変成器にあっては、鉄心)には、使用電圧の区分に応じ、29-1表に規定する接地工事を施すこと。た だし、外箱を充電して使用する機械器具に人が触れるおそれがないようにさくなどを設けて施設する場合又は絶縁 台を設けて施設する場合は、この限りでない。

機械器具の使用電圧の区分		接地工事
低圧	300V以下	D種接地工事
	300V超過	C種接地工事
高圧又は特別高圧		A種接地工事

29-1表

接地には次の二つの目的がある。

- (1)地絡発生時に検出を可能にするため
- (2)電路と金属製外箱等との間の絶縁抵抗が低下した時に、金属製外箱等の対地電位を制限し 感電の危険を低減するため

上記(1)の目的を達する上では接地抵抗が大きくなると、地絡検出の不感帯(地絡してもそれを検知し難い電位)が広くなり危険であることが分かっている (付録 A03_地絡とアーク遷移, 2Voc 事故)。 よって、接地抵抗は小さいことが好ましく、 500Ω への緩和規程を援用することは危険である。 また上記(2)の目的のためにも、接地抵抗は小さいことが好ましい。電路と金属製外箱等との間の絶縁抵抗を Rins、接地抵抗を Rg とし、電路の対地電位を V とすると、金属製外箱等の対地電位は、

 $V \times Rg / (Rg + Rins)$

となり、Rgが大きいと接触感電の危険が増すためである。

金属製外箱等の対地電位が上昇し、漏電が検出された場合、交流電気設備であれば漏電遮断器が動作することで無電圧化する。しかし、太陽光発電装置の直流回路は、パワーコンディショナが停止しても電圧が保持されたままであるため、接触すれば感電する。従って、太陽光発電設備の地絡が検出された場合、架台、接続箱筐体、パワーコンディショナ筐体など直流回路まわりの金属部分に触れることは危険である。触れる前にかならず対地電位を確認することが必要である。

$[3] \sim [10]$

NEF 住宅用太陽光発電システム施工品質向上委員会が作成した,「住宅用太陽光発電システム設

計・施工指針補足」(平成19年3月9日)の6.5 機器の設置工事 を参考に作成して作成した。 http://www.solar.nef.or.jp/sekou.pdf

http://www.solar.nef.or.jp/hosoku.pdf

電気設備の技術基準の解釈 第143条 (平成26年7月18日改正版)

【電路の対地電圧の制限】(省令第15条、第56条第1項、第59条、第63条第1項、第64条) 住宅の屋内電路(電気機械器具内の電路を除く。以下この項において同じ。)の対地電圧は、150V以下であること。ただし、次の各号のいずれかに該当する場合は、この限りでない。

.

- 三 太陽電池モジュールに接続する負荷側の屋内配線(複数の太陽電池モジュールを施設する場合にあっては、その集合体に接続する負荷側の配線)を次により施設する場合
- イ 屋内配線の対地電圧は、直流 450V以下であること。
- ロ 電路に地絡が生じたときに自動的に電路を遮断する装置を施設すること。ただし、次に適合する場合は、 この限りでない。
- (イ) 直流電路が、非接地であること。
- (ロ) 直流電路に接続する逆変換装置の交流側に絶縁変圧器を施設すること。
- (ハ) 太陽電池モジュールの合計出力が、20kW 未満であること。ただし、屋内電路の対地電圧が300V を超える場合にあっては、太陽電池モジュールの合計出力は10kW以下とし、かつ、直流電路に機械器具(太陽電池モジュール、第200条第2項第一号ロ及びハの器具、逆変換装置並びに避雷器を除く。)を施設しないこと。ハ 屋内配線は、次のいずれかによること。
- (イ) 人が触れるおそれのない隠ぺい場所に、合成樹脂管工事、金属管工事又はケーブル工事により施設すること。 (ロ) ケーブル工事により施設し、電線に接触防護措置を施すこと。

電気設備の技術基準の解釈 第151条 (平成26年7月18日改正版)

【電気機械器具の施設】(省令第59条第1項)

電気機械器具(配線器具を除く。以下この条において同じ。)は、その充電部分が露出しないように施設すること。 ただし、次の各号のいずれかに該当するものについては、この限りでない。

- 一 第 183 条に規定する特別低電圧照明回路の白熱電灯
- 二 管灯回路の配線
- 三 電気こんろ等その充電部分を露出して電気を使用することがやむを得ない電熱器であって、その露出する部分の 対地電圧が150V以下のもののその露出する部分
- 四 電気炉、電気溶接器、電動機、電解槽又は電撃殺虫器であって、その充電部分の一部を露出して電気を使用することがやむを得ないもののその露出する部分
- 五 次に掲げるもの以外の電気機械器具であって、取扱者以外の者が出入りできないように措置した場所に施設する もの
- イ 白熱電灯
- 口 放電灯
- ハ 家庭用電気機械器具
- 2 通電部分に人が立ち入る電気機械器具は、施設しないこと。ただし、第198条の規定により施設する場合は、こ

の限りでない。

- 3 屋外に施設する電気機械器具(管灯回路の配線を除く。)内の配線のうち、人が接触するおそれ又は損傷を受ける おそれがある部分は、第 159 条の規定に準ずる金属管工事又は第 164 条(第 3 項を除く。)の規定に準ずるケーブ ル工事(電線を金属製の管その他の防護装置に収める場合に限る。)により施設すること。
- 4 電気機械器具に電線を接続する場合は、ねじ止めその他これと同等以上の効力のある方法により、堅ろうに、かつ、電気的に完全に接続するとともに、接続点に張力が加わらないようにすること。

電気設備の技術基準の解釈 第156条(平成26年7月18日改正版)

【低圧屋内配線の施設場所による工事の種類】(省令第56条第1項)

低圧屋内配線は、次の各号に掲げるものを除き、156-1表に規定する工事のいずれかにより施設すること。

- 一 第172条第1項の規定により施設するもの
- 二 第175条から第178条までに規定する場所に施設するもの。

156-1表

施設場所の区分 使用電圧の 区分		工事の種類												
			がいし引き工事	合成樹脂管工事	金属管工事	金属可とう電線管	金属線ぴ工事	金属ダクト工事	バスダクト工事	ケーブル工事	フロアダクト工事	セルラダクト工事	ライティングダク	平形保護層工事
	乾燥した場所	300V以下	0	0	0	0	0	0	0	0			0	
展開した	平の米 した場別	300V超過	0	0	0	0		0	0	0				
場所	湿気の多い場所又は水	300V以下	0	0	0	0			0	0				
	気のある場所	300V超過	0	0	0	0				0				
点検でき	乾燥した場所	300V以下	0	0	0	0	0	0	0	0		0	0	0
	平の栄 した場所	300V超過	0	0	0	0		0	0	0				
場所	湿気の多い場所又は水 気のある場所	_	0	0	0	0				0				
上松でき	乾燥した場所	300V以下		0	0	0				0	0	0		
点検でき ない隠ぺ	平仏米 し に物門	300V超過		0	0	0				0				
い場所	湿気の多い場所又は水 気のある場所	_		0	0	0				0				

(備考) ○は、使用できることを示す。

JISC8981 住宅用太陽光発電システム電気系安全設計標準

6. 設置工事

6.1 中継端子箱 (接続箱) の接地

d)アレイ出力開閉器などに専用の外箱を設ける場合は、結露しない構造とする。ただし、安全が確保されている場合は、この限りでない。

- [11] 太陽光発電設備の電気配線は屋内外に配線されるため、通常の電気配線と区別がつかない可能性が高い。特に太陽光発電システムは太陽が照射する限り、遮断が難しい装置でもあるため、発注者・設置者等の感電のリスクを考えて、太陽光発電設備に関する回路であることを明示することが好ましい。(2.6 消防隊員保護対策の参照)
- [12] 50kW 未満の太陽光発電システムは, [1]に示したさく/へい等の設置義務はない。しかしながら, 一般人が容易に立ち入り, 太陽電池アレイ等に触れる可能性がある場合, 一般人への感電等の危険があるため, さく/へいを設けることが好ましい。

2.5.2 配線方法

【目的】

感電・火災危険を保護するために必要な配線を実現するため。

【設計指針】

- [21] 現場においてアセンブリをするコネクタを選択した場合、使用する工具は、当該コネクタ 専用の工具を利用すること。
- [22] 直流電路は、屋外配線を基本とすること。ただし、やむを得ず屋内の隠蔽配線となる箇所は、配線区間を出来るだけ短くするとともに、安全に十分配慮した工事を行なうこと。また、直流電路は、充電部を極力最小化するために、太陽電池アレイに近いところで遮断できるようにすることが望ましい。
- [23] 防火区画を貫通するケーブル工事は、法・規則に準拠した工事を行なうこと(「建築設備設計・施工上の運用指針 2013 年版」等参照)。
- [24] 屋内配線区間は、二方向避難原則を適用すること。ただし、条例により「二方向の避難経路が確保できない場合は避難用器具の設置などで代替すること」が認められている場合、各条例に示す方法を用いて配線すること。
- [25] 太陽電池アレイ配線は、雷誘導による過電圧の大きさを低減するため、導電ループ面積が 最小限となる方法で敷設することが望ましい。

【設計指針 解説】

[1] 現場アセンブリする場合、電技省令7条(電技解釈12条)に示す通り、専用の工具を利用することは、コネクタのはずれや、接触不良による直列アークを防止するために必要である。

電技省令7条(電技解釈12条)「第12条電線を接続する場合は、第181条、第182条又は第192条の規定により施設する場合を除き、電線の電気抵抗を増加させないように接続するとともに、次の各号によること。

- 一 裸電線(多心型電線の絶縁物で被覆していない導体を含む。以下この条において同じ。) 相互, 又は裸電線と絶縁電線(多心型電線の絶縁物で被覆した導体を含み, 平形導体合成樹脂絶縁電線を除く。以下この条において同じ。), キャブタイヤケーブル若しくはケーブルとを接続する場合は、次によること。
 - イ 電線の引張強さを20%以上減少させないこと。ただし、ジャンパー線を接続する場合その他電線に加わる張力が電線の引張強さに比べて著しく小さい場合は、この限りでない。
 - ロ接続部分には、接続管その他の器具を使用し、又はろう付けすること。ただし、架空電線相互若しくは電車線相互又は鉱山の坑道内において電線相互を接続する場合であって、技術上困難であるときは、この限りでない。
- 二 絶縁電線相互又は絶縁電線とコード、キャブタイヤケーブル若しくはケーブルとを接続する場合は、前号の規定 に準じるほか、次のいずれかによること。
 - イ 接続部分の絶縁電線の絶縁物と同等以上の絶縁効力のある接続器を使用すること。
 - ロ 接続部分をその部分の絶縁電線の絶縁物と同等以上の絶縁効力のあるもので十分に被覆すること。
- 三 コード相互、キャブタイヤケーブル相互、ケーブル相互又はこれらのもの相互を接続する場合は、コード接続器、接続箱その他の器具を使用すること。ただし、次のいずれかに該当する場合はこの限りでない。

イ 断面積8mm2 以上のキャブタイヤケーブル相互を接続する場合において,第一号及び第二号の規定に準じて接続し、かつ、次のいずれかによるとき

- (イ)接続部分の絶縁被覆を完全に硫化すること。
- (ロ)接続部分の上に堅ろうな金属製の防護装置を施すこと。

ロ 金属被覆のないケーブル相互を接続する場合において、第一号及び第二号の規定に準じて接続するとき 四 導体にアルミニウム (アルミニウムの合金を含む。以下この条において同じ。) を使用する電線と銅 (銅の合金を含む。) を使用する電線とを接続する等、電気化学的性質の異なる導体を接続する場合には、接続部分に電気的腐食が生じないようにすること。

五 導体にアルミニウムを使用する絶縁電線又はケーブルを、屋内配線、屋側配線又は屋外配線に使用する場合において、当該電線を接続するときは、次のいずれかの器具を使用すること。

イ 電気用品安全法の適用を受ける接続器

ロ 日本工業規格 JIS C 2810 (1995)「屋内配線用電線コネクタ通則-分離不能形」の「4.2 温度上昇」,「4.3 ヒートサイクル」及び「5 構造」に適合する接続管その他の器具」

また、内線規程 1335-7、1335-8 にある規定を順守するためにも、これらは必須である。電技解釈 200 条第 2 項第一号ホは接続部分の接続不良による過熱焼損事故を防止することを目的として 「太陽電池モジュール及び開閉器その他の器具に電線を接続する場合は、ねじ止めその他の方法により、堅ろうに、かつ、電気的に完全に接続するとともに、接続点に張力が加わらないようにすること。 (関連省令第7条)」と定めている。

(電線の混触の防止) 電技第二十八条

電線路の電線、電力保安通信線又は電車線等は、他の電線又は弱電流電線等と接近し、若しくは交さする場合又は 同一支持物に施設する場合には、他の電線又は弱電流電線等を損傷するおそれがなく、かつ、接触、断線等によっ て生じる混触による感電又は火災のおそれがないように施設しなければならない。

[2] 直流電路の途中において事故が発生した場合,屋外配線は,屋内配線と比較して,事故被害拡大の恐れを低減することができるので、屋外配線を基本にするべきである。事故被害拡大の例として,事故点から周辺可燃物への延焼がある。屋内配線は,可燃物を避けて配線することは極めて難しいが,屋外配線は,可燃物を避けた配線ができる。また,他の事故拡大の例として,事故発生時の設置者,消火活動時の消防隊員に対する感電,煙害がある。火災が発生した場合,配線は燃焼し充電部がむき出しになることがある。屋内配線は,むき出しになった充電部に接触する恐れが高くなる。他方,屋外配線は,少なくとも屋内での感電の恐れを低減することができる。

太陽光発電は、太陽日射の入力エネルギーがある限り発電(起電力の発生)するため、電力・電圧の発生源である屋根上の太陽電池アレイ直下において、日中に無電圧とすることは容易ではない。そのため屋内配線は、図 2.5.2-1 に示す接続箱が屋上から 1 階付近にある場合、設置者等が自由に無電圧化できない充電部が太陽電池アレイから接続箱に至る屋内に存在し、感電の危険が高くになる。もし太陽電池アレイ直下に接続箱がある場合、アレイ直下において遮断することで、屋内電路を無電圧化することができる。ただしその場合、アレイ直下の接続箱へアクセスすることおよび電路を遮断する(遮断器を動作させる)ことは必要であるため、接続箱の設置場所は、アクセスの良さを

考えて決定する必要がある。なお、設置者や消防隊員の感電の恐れを低減することを目的とした、接続箱の遮断器を遠隔制御できる装置が存在する(2.6.4 ラピッドシャットダウンを参照)。他方、屋外配線は、屋内配線と同様に太陽電池アレイから接続箱に至る電路は、設置者等が自由に遮断できない充電部が存在する。しかしながら、設置者等が屋外配線の充電部に接触する頻度は、屋内配線と比較して低いため、屋外配線は屋内配線と比較して、感電等の恐れを低減できる。

なお直流電路は、屋外配線を基本とするが、やむ得ず屋内配線を行う場合、配線区間は出来るだけ短くし、配線は不燃性の電線管に通すなど、安全に十分配慮した工事を行なうことが必要である。

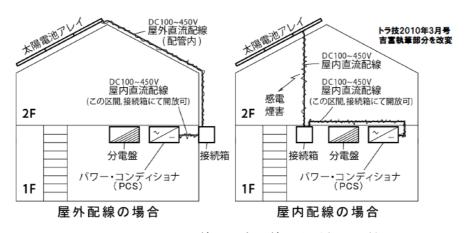


図 2.5.2-1 屋外配線と屋内配線の充電部の比較

[3] 建築基準法で定められた「防火区画等」をケーブル・配管等が貫通する場合においては、法令で規定された仕様もしくは性能基準を満たしたものとして認められた構造方法を用いなければならない。基本的に、「防火区画等」は建築基準法で規定された面積以内ごとに設置することが必要(建築基準法施行令第112条)であり、他に住戸間の界壁部分など(令第114条)が「防火区画等」と扱われる。「防火区画等」は、建築物内の延焼防止の目的で義務付けられており、準耐火構造が必要とされている。

旧 BCJ 工法 ((一財) 日本建築センターによる評定工法) については、改正建築基準法上の性能 基準と照らし合わせ (読み替え作業) が行われ、その結果認められたものについてはそれぞれ固有 の新認定番号が付され、1 時間耐火の移行認定として、引き続き使用できるようになっている。な お、移行認定にあたり、ケーブルおよび配管が壁を貫通する工法では、中空壁の施工に関する留意 事項が付記されている。留意事項には、参考図面が添付されており、記された図面を参考に、耐火 性能を満足する配慮が成されることにより、認定工法の適用が可能となる。その解釈として、ケー ブル防災設備協議会より資料 (中空壁の貫通部防火措置について:防災技資第 15 号) が出されて いる。

参考文献: http://www.furukawa.co.jp/tukuru/pdf/bousai/13 boukahourei.pdf

また、電線がメタルラス張り、ワイヤラス張りまたは金属板張りの造営材を貫通する場合は、その 貫通する部分の電線を電線ごとにそれぞれ別個の難燃性及び耐水性のある堅ろうな絶縁管に収め て施設し、外壁と絶縁管取合部には、防水処理を行なうこと。また、その部分のメタルラス、ワイ ヤラスまたは金属板を十分に切り裂き、耐久性のある絶縁管をはめ、または耐久性のある絶縁テー プを巻くことにより、メタルラス、ワイヤラスまたは金属板と電気的に接続しないように施設する こと。

- ①壁および野地板貫通部のケーブルは保護管等による何らかの保護をすることが望ましい。
- ②ケーブル配管を使用する場合は、配管内部に水は侵入しないよう、また溜まらないように施工すること。
- ③太陽光発電設備の配線は、弱電流電線およびテレビのアンテナ線と離隔距離をおくこと、並行に 施設しないこと。
- ④配電管の貫通する部分および貫通する部分からそれぞれ1m 以内の距離にある部分を不燃材で造ること。
- [4] 火災時の避難のために、避難経路(階段、バルコニー等)は、二方向を確保する必要がある。屋内 配線のケーブルが火元になることを想定した場合に屋内配線区間からみて二方向の避難経路を考 慮した配線が必要となる。建築基準法施行令第121条には以下の記述がある。

ただし、条例により二方向の避難経路が確保できない場合は避難用器具の設置などで代替することが認められている場合、各条例に示す方法と同等もしくはそれ以上の対策を行うことが必要である。

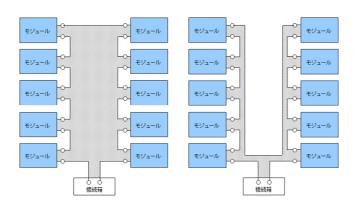
建築基準法施行令第121条

建築物の避難階以外の階が次の各号のいずれかに該当する場合においては、その階から避難階又は地上に通ずる二 以上の直通階段を設けなければならない。

- 一 劇場,映画館,演芸場,観覧場,公会堂又は集会場の用途に供する階でその階に客席,集会室その他これらに 類するものを有するもの
- 二 物品販売業を営む店舗(床面積の合計が千五百平方メートルを超えるものに限る。第百二十二条第二項,第百二十四条第一項及び第百二十五条第三項において同じ。)の用途に供する階でその階に売場を有するもの
- 三 次に掲げる用途に供する階でその階に客席、客室その他これらに類するものを有するもの(五階以下の階で、その階の居室の床面積の合計が百平方メートルを超えず、かつ、その階に避難上有効なバルコニー、屋外通路その他これらに類するもの及びその階から避難階又は地上に通ずる直通階段で第百二十三条第二項又は第三項の規定に適合するものが設けられているもの並びに避難階の直上階又は直下階である五階以下の階でその階の居室の床面積の合計が百平方メートルを超えないものを除く。)
 - イ キャバレー、カフェー、ナイトクラブ又はバー
 - ロ 個室付浴場業その他客の性的好奇心に応じてその客に接触する役務を提供する営業を営む施設
 - ハ ヌードスタジオその他これに類する興行場(劇場,映画館又は演芸場に該当するものを除く。)
 - ニ 専ら異性を同伴する客の休憩の用に供する施設
 - ホ 店舗型電話異性紹介営業その他これに類する営業を営む店舗
- 四 病院若しくは診療所の用途に供する階でその階における病室の床面積の合計又は児童福祉施設等の用途に供する階でその階における児童福祉施設等の主たる用途に供する居室の床面積の合計が、それぞれ五十平方メートルを超えるもの
- 五 ホテル、旅館若しくは下宿の用途に供する階でその階における宿泊室の床面積の合計、共同住宅の用途に供す

る階でその階における居室の床面積の合計又は寄宿舎の用途に供する階でその階における寝室の床面積の合計が, それぞれ百平fメートルを超えるもの

六 前各号に掲げる階以外の階で次のイ又はロに該当するもの


イ 六階以上の階でその階に居室を有するもの(第一号から第四号までに掲げる用途に供する階以外の階で、その階の居室の床面積の合計が百平方メートルを超えず、かつ、その階に避難上有効なバルコニー、屋外通路その他これらに類するもの及びその階から避難階又は地上に通ずる直通階段で第百二十三条第二項又は第三項の規定に適合するものが設けられているものを除く。)

ロ 五階以下の階でその階における居室の床面積の合計が避難階の直上階にあつては二百平方メートルを, その他の階にあつては百平方メートルを超えるもの

主要構造部が準耐火構造であるか、又は不燃材料で造られている建築物について前項の規定を適用する場合には、 同項中「五十平方メートル」とあるのは「百平方メートル」と、「百平方メートル」とあるのは「二百平方メートル」と、「二百平方メートル」とあるのは「四百平方メートル」とする。

第一項の規定により避難階又は地上に通ずる二以上の直通階段を設ける場合において、居室の各部分から各直通階段に至る通常の歩行経路のすべてに共通の重複区間があるときにおける当該重複区間の長さは、前条に規定する歩行距離の数値の二分の一をこえてはならない。ただし、居室の各部分から、当該重複区間を経由しないで、避難上有効なバルコニー、屋外通路その他これらに類するものに避難することができる場合は、この限りでない。

[5] 太陽電池アレイ付近において、雷(直撃/誘導)が発生した場合に、太陽電池アレイ配線内のケーブルに電磁誘導は発生することになる。その場合に、正負極のケーブルを図 2.5.2-2 の右のように並列配線している場合には、誘導電流が打ち消しあい、線間の過電圧の発生がない。一方で、正負極を離して配線した場合には、大きな閉ループが形成されてしまい、両者に過電圧が発生する可能性がある。IEC60369-9-1 の CDV においても、同記載がある (2.4 雷害保護設計を参照)。

誘導ループが大きい配線 誘導ループが小さい配線

図 2.5.2-2 太陽電池モジュールの配線による誘導ループの違い

【紹介事項】

- [11] 米国では、屋内配線への引込は、金属筐体を利用している。
- [12] 独では、易燃性物質が存在する室内には設置してならない。

【紹介事項 解説】

[6] NFPA 70: NATIONAL ELECTRICAL CODE (NEC) 第 690 条「太陽光発電 (PV) システム」には、以下の記載がある (邦訳)。

建物に一体化したシステム又は他のPV システムからの直流PV 電源回路又は直流PV 出力回路は、建物内又は構造物内で運転する場合、建物又は構造物の表面の貫通点から、容易にアクセス可能な最初の断路手段まで、250.118 (10) に適合する型式 MC の金属被覆ケーブルの金属レースウェイ、又は金属エンクロージャに収容すること。断線手段は、690.13 (B)及び(C)ならびに 690.15(A)及び(B) に適合すること。配線方法は、690.31 (G)の(1)~(4)に規定する設置に関する追加要求事項に適合すること。

日本では電技解釈解説 110 条第 2 項にて、木造では金属管配管が禁止されている。電技解釈解説では以下の記載がある。

第2項は、低圧屋側電線路の工事の種類及びその方法について示している。第2項各号において工事方法を規定しているが、木造造営物の屋側部分は、電気工事の完了後、しばらくたってから木造造営物にメタルラス張り等が施工されるケースがあり、このようなケースで漏電火災事故につながる事例が多かったため、過去の漏電火災事故の分析をもとに、〇47基準で木造造営物には金属管工事、バスダクト工事、金属被覆を有するケーブル工事をしないこととした。

[7] ドイツのシステム設計技術マニュアル (VdS 3145: 2011-07 (01)) では、直流配線は、易燃性物質 (例えば、わら) が存在する室内に敷設してはならない (VdS 2033 を参照) と記載がある。また、農業領域で用いる場合、配線をネズミやリス等のげっ歯類にかじられないよう、以下によって保護すること。密閉されたチューブ内またはモール内への敷設。その際、配線挿入部の密閉性も確認すること。配線を「スイングする」状態で敷設しない。すなわち、配線は、取付けシステムにできる限り密着させて敷設すること。ネズミやリス等のげっ歯類が密閉モールへ侵入することを防止できない場合のオープン型モールの設置。金属が編み込まれた、もしくは金属被覆の配線の使用。の記載もある。

ケーブルおよび配線の損傷の危険を避けるため、例えば、先の尖った角上に敷設されたり、その上で引っ張られたりしてはならないとの記載もある。

2.5.3 DC 直列・並列アーク対策装置 (アーク検出/遮断器)

【目的】

直並列アークを検出し一定の規模において遮断を行うこと。

【設計指針】

該当なし。

【設計指針 解説】

該当なし。国内では、DC 直列・並列アーク対策装置は議論が十分でなく、事故拡大の懸念を払拭し難いため、すべて紹介としている。

【紹介事項】

- [1] 米国では、新設の太陽光発電設備に対して DC 直列・並列アーク対策装置の設置が義務付けられ、UL1699b に合格した装置が利用されている。
- [2] 米国では、直列アークと並列アークを判別して遮断するアーク検出/遮断器の研究が実施されている。
- [3] アーク検出/遮断器を接続箱に入れる場合、他の素子等への影響がない装置を選定することが望ましい。
- [4] **アーク検出/遮断器は**,アーク検出時に太陽電池ストリングの中点を切り離す場所に設置することにより、事故の終息可能範囲をひろげることができる方法がある。

【紹介事項 解説】

米国では太陽光発電の火災事故防止手段として,直流回路へのアーク検出/遮断器(AFCI: [1] Arc Fault Circuit Interrupter) の設置が NEC2011 において義務づけられ, その試験規格として UL1699b が整備された。この装置は、電流または電圧の時間変化を監視し、特定周波数における変動からア ークの発生を検出するものであり、Haeberlin らによって 1990 年代から研究と実証が行われてきた ものである(参考文献 1)。欧州では、UL1699b におけるアーク発生条件では特定周波数しか発生 できず,実際の事故でのアークが有する周波数はさまざまであることを指摘している。そのため、 検出機能には複数の周波数条件を学習させる研究や、試験条件の検討もなされている(参考文献2) AFCI は、バイパス回路開放や多点地絡等の原因にかかわらず、アークが発生した場合はそれを検 出できる長所がある。従って、各種の直流電気事故の発生を防止する手段が不成功に終わり、アー クに至った場合に、それを終息させる最後の砦としての役割を果たすことが期待される。ただし、 全ての直流電気事故がアーク発生を伴うとは限らないため、AFCI のみに頼ることは危険であるこ とから, 第一義的には各種電気事故の未然防止のための対策を行い, AFCI は最後の砦としての役 割を担わせることが適切である。また、AFCI の動作によって回路が遮断された場合に、被害が却 って拡大する懸念が存在する。また国内ではその技術方式の適切性の議論は十分でないため、本書 では AFCI の使用は「紹介」するに留めた。国内でも短絡の発見やアーク検出の研究が報告されて いる (参考文献 3,4)

参考文献 1: M. Real, H. Häberlin: "Improved Safety of PV against Fire using a Novel Arc Detector". Proc.

13th EU PV Conf., Nice 1995)

参考文献 2: Workshop PV-Bradsicherheit, 03. April 2014 in Köln 講演資料, 2014)

参考文献 3:安藤他,太陽光発電システムにおけるインテリジェント保護装置",太陽エネルギー, Vol37, No.6, 2011)

参考文献 4: 酒井他, 太陽光発電システムにおけるアーク特性の一検討, 太陽/風力エネルギー講演 論文集(2014)

[2] ネジのゆるみやバイパス回路開放に起因する直列アークは、AFCI によって負荷を切り離すことで終息することができる。しかし、多点地絡や線間短絡による地絡アークや並列アークは、負荷の切り離しによって却って被害が拡大し、負荷を短絡することで終息すると期待される。太陽電池アレイの短絡電流は、動作電流の 1.2 倍程度に過ぎないため、米国ではアークの種類を判別して、負荷を切り離すかあるいは短絡することが検討されている(参考文献 1)。具体的には、負荷を開放しアークが終息しなければ並列アークと判定して負荷を短絡する実験が行われている(参考文献 2)。しかしながら、この方法では並列アーク発生時に短時間でも負荷を開放すると事故拡大する懸念があること、および、バイパス回路が開放故障しているクラスタ内に低電流セルが存在する場合等に負荷短絡は新たな事故を発生させる懸念があることから、本書では直並分離は紹介に留めた。

参考文献 1: J. Johnson, M. Montoya, S. McCalmont, G., F. Fuks, J. Earle, A. Fresquez, S. Gonzalez, J. Granata, Differentiating series and parallel photovoltaic arc-faults Photovoltaic Specialists Conference (PVSC), 38th IEEE(2012)

参考文献 2: J. Johnson, boB Gudgel, A. Meares, A. Fresquez, Series and parallel arc-fault circuit interrupter tests, SANDIA Report2013-5916(2013)

- [3] AFCI の設置箇所の有力な候補には接続箱内が挙げられる。しかし、接続箱内にストリングモニタなどが組み込まれている場合には、これに悪影響を与えることがないようにする必要がある。
- [4] 直列アークは、太陽電池ストリングの中点を切り離すことによって消弧することが可能である。また、地絡アークや並列アークであっても、アークによって橋絡されている箇所の電位が太陽電池ストリングの中点を挟んでいる場合(たとえば両極地絡や極間短絡)も、太陽電池ストリングの中点を切り離すことによって消弧することが可能である。(図 2.5.3-1 および参考文献 1)

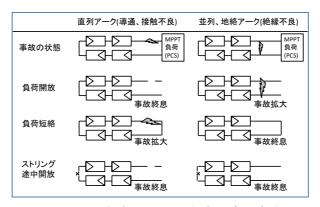


図 2.5.3-1 直流アーク発生時の遮断方法

参考文献 1: 石井, 太陽光発電システムの直流電気事故対策-II (地絡保護およびアーク保護), 電気学会誌 134(10),688-692,2014)

2.6 消防隊員保護対策

太陽光発電設備が設置されている建物火災において、消防活動中の消防隊員が直流ケーブル等に触れ 感電するという事例が起きている。これまでのところ大事故には至ってはいないが、消防隊員の事故防 止、感電危険性の低減に向けた対策は、太陽光発電設備にとって重要な問題である。

この問題は消防側にも認識され始めている。例えば、東京消防庁は、平成25年度に外部有識者を交えた太陽光発電設備に係る防火安全対策検討部会を設置し、太陽光発電設備を設置する建物に必要な防火安全対策について検討した。そして東京消防庁は、この検討をもとに消防法施行令(昭和36年政令第37号)別表第一に掲げる防火対象物に太陽光発電設備を設置する場合の指導基準(東京消防庁のホームページで公表されている:http://www.tfd.metro.tokyo.jp/hp-yobouka/sun/shidoukijun.html)を策定し、平成26年10月1日から運用を開始した。

ここでは、上記の東京消防庁の取り組みをもとに、太陽光発電設備の認知と消防活動スペースの確保 という観点について、安全のための指針を示す。ただし、本項目は他の自治体、消防本部に統一的に決 まっているものでないため、安全を考えるうえでの情報として扱って頂きたい。

2.6.1 太陽光発電設備設置のサイン

【目的】

火災の際の消防隊員の危険防止のため、太陽光発電設備が設置されている建築物であることを消防隊員 が認知することを目的とする。

【設計指針】

[1] 太陽光発電設備を設置した建物は、消防隊員の進入経路となる建物入口および玄関、管理室又は防災センター、電気室扉、EPS 扉等に、太陽光発電設備が設置されていることがわかるサインを表示すること。

【設計指針 解説】

[1] 消防隊員が消防活動を開始する場合、太陽光発電設備による感電等の危険があるかどうか確認するために、消防隊員は太陽光発電設備の設置有無を把握することが重要である。太陽電池モジュールがすぐ目視で認識することができる場合、設置有無の判断が可能である。しかしながら、地上から認識できない建物屋上に設置された太陽光発電設備や建材一体型太陽電池モジュールの場合、設置の有無の判断ができないことが多い。消防隊員の進入経路に太陽光発電設備設置のサインがあることで、消防隊員は太陽光発電設備にともなう危険性を予め認識したうえで消防活動を行うことが可能となる。

東京消防庁が策定した「太陽光発電設備に係る防火安全対策の指導基準」では、東京都の公共産業用太陽光発電設備を対象として、消防隊員の進入経路上で、接続箱、パワーコンディショナ等の機器および直流配線に接近する入口等に表示を行うことを、感電防止対策として示している。また、これを受け、一般社団法人太陽光発電協会(JPEA)も同指導基準を遵守することを推奨するともに、「公共産業用太陽光発電設備のレイアウトと表示例」を作成し公開している(参考文献 1)。

本指針においても、消防隊員の感電リスク低減を目的に、表 2.6.1-1 および表 2.6.1-2 に示す同指

導基準の遵守を推奨する。なお、東京消防庁指導基準では、建物(管理室等)に表示された場合、建物(入口)へのサインは緩和要件にあるが、消防隊員の保護を考えた場合は、省略しないことを 推奨する。

参考文献 1: http://www.jpea.gr.jp/pdf/t140925.pdf

表 2.6.1-1 東京消防庁指導基準

(直流配線・屋内引き込み有りの場合の具体的な表示方法及び表示不要の条件)

消防隊員の進入経	具体的表示方法	表示不要の条件
路		
建物(入口)	入口扉付近の容易に確認できる位置に	建物(管理室等)に表示された場合
	一箇所以上表示	
建物(管理室等)	管理室, 防災センターの入口扉又は,	緩和なし(必須)
	内部に設置された自動火災報知設備受	
	信機の周辺の容易に確認できる位置に	
	一箇所以上表示	
電気室、EPS等	 扉又は扉付近の容易に確認できる位置	直流配線が設置された電気室・
	に一箇所以上表示	EPS 等の位置を,管理室等に備え
		られた図面等により消防隊員が容
		易に判断できる場合

(参考文献:東京消防庁 太陽光発電設備に係る防火安全対策の指導基準)

表 2.6.1-2 東京消防庁指導基準 (消防隊員進入経路への表示内容)

	2 水水间的7114年至中(旧的例果是八陸站 少数71114)
表示内容	基本用語
	「太陽光発電」 ,「PV」のいずれか
	表示例
	「太陽光発電」・「PV」の基本用語が含まれているもの
	「太陽光発電設備」,「太陽光発電設備設置室」,「PV 設置」,「PV 設置建物」,
	「PV システム設置建物」,「PV 設置室」等
文字の大きさ	ゴシック体等で文字ポイント 24 以上とするなど、表示された近傍から容易
	に確認できる大きさとすること。ただし、機器本体及び周囲に十分な表示ス
	ペースがない場合は、表示が最大限可能な大きさとすること。
色	白地に黒文字または赤文字とするなど、近傍から容易に読み取れる色の組み
	合わせとすること。

(参考文献:東京消防庁 太陽光発電設備に係る防火安全対策の指導基準)

2.6.2 太陽光発電機器・ケーブルのサイン

【目的】

火災の際の消防隊員の危険防止のため、太陽光発電機器であることを消防隊員が認知することを目的とする。

【設計指針】

[1] 太陽光発電機器・ケーブルは、機器が設置されていることがわかるサインを表示すること。

【設計指針 解説】

[1] 日中の場合、太陽光発電設備は電力系統からの電力が遮断されパワーコンディショナの作動が 停止しても、太陽電池モジュールからパワーコンディショナまでの直流配線の間は直流電圧がかか っている。そのため、この区間は消防活動時において感電リスクが高い箇所となる。

そのため、接続箱、直流配線、パワーコンディショナには太陽光発電設備の一部であることを示す表示をすることにより、消防隊員に認識を促し、感電リスクを低減することができる。

東京消防庁「太陽光発電設備に係る防火安全対策の指導基準」では、パワーコンディショナの屋外設置(屋内に直流配線の引き込みがない場合)と屋内設置(屋内に直流配線引き込みがある場合)の設置形態について以下の表に示す表示要領が示されている。

なお、表 2.6.2-1 から表 2.6.2-3 に「太陽光発電設備に係る防火安全対策の指導基準」における表示は、前述のとおり、公共産業用太陽光発電設備を対象とするものであるが、表示は、住宅用システムにおいても消防活動時の感電防止対策として有効である。

表 2.6.2-1 東京消防庁指導基準 (直流配線-屋内引き込み無しの場合の具体的な表示方法及び表示不要の条件)

太陽光発電機器	具体的表示方法	表示不要の条件
接続箱,	機器本体の容易に確認	・太陽電池モジュールに近接して設置される
パワーコンディショナ等	できる位置に一箇所以	など太陽光発電機器であることが容易に
	上表示	判断できる場合
		・機器本体に表示された商品名等により、太
		陽光発電機器であることが容易に判断で
		きる場合
直流配線	どの位置においても, 一箇所以上,容易に確	・太陽電池モジュールと接続していることが容易に判断できる場合
	認できるよう表示	・配線表面の色又は模様により、直流配線で
		あることが容易に判断できる場合

表 2.6.2-2 東京消防庁指導基準

(直流配線・屋内引き込み有りの場合の具体的な表示方法及び表示不要の条件)

太陽光発電機器	具体的表示方法	表示不要の条件
接続箱,	機器本体の容易に確認できる位	・太陽電池モジュールに近接して
パワーコンディショナ等	置に一箇所以上表示	設置されるなど太陽光発電機
		器であることが容易に判断で
		きる場合
		・機器本体に表示された商品名等
		により, 太陽光発電機器である
		ことが容易に判断できる場合
直流配線	・配線又はケーブルダクト等にど	・太陽電池モジュールと接続して
	の位置からも,一箇所以上,容	いることが容易に判断できる
	易に確認できるように表示	場合
	・垂直設置する場合は、各階に表	・配線表面の色又は模様により、
	示	直流配線であることが容易に
		判断できる場合

表 2.6.2-3 東京消防庁指導基準 (太陽光発電機器本体の表示内容)

	衣 2.0.2 b 未求捐奶用 相等基準(太陽九光电機晶本体の衣小門台)
表示内	基本用語
容	「太陽光」,「太陽電池」,「PV」,「ソーラー」のいずれか + 機器名
	表示例
	「太陽光」,「太陽電池」,「PV」,「ソーラー」のいずれかの文字が含まれている用語+
	機器名の例は以下のとおり
	本体に機器名が明記されている場合は、機器名を省略できる。配線、ケーブル、ケーブ
	ルダクト等は機器名を省略できる。
	「太陽光発電+機器名」,「PVシステム+機器名」,「ソーラーシステム+機器名」等
文字の	ゴシック体等で文字ポイント 24 以上とするなど、表示された近傍から容易に確認でき
大きさ	る大きさとすること。ただし、機器本体及び周囲に十分な表示スペースがない場合は、
	表示が最大限可能な大きさとすること。
色	白地に黒文字または赤文字とするなど、近傍から容易に読み取れる色の組み合わせとす
	ること。
その他	a表示方法は、表示箇所に応じて、シール、タグ、銘板、塗装等とすること。
の注意	b 直流配線が天井裏,壁体内等に隠ぺいされている場合は,点検口等から見える位置に
点	表示すること。
	c 金属管, ラック, ケーブルダクト等による設置方法で, 配線本体への表示が見えない
	場合は,ケーブルダクト等の表面の見易い位置にも表示すること。ただし,他の配線
	等と混在しない,太陽光発電設備専用のケーブルダクト等の場合は,配線本体への表
	示は省略できる。

(参考文献:東京消防庁 太陽光発電設備に係る防火安全対策の指導基準)

2.6.3 消防活動の安全を確保した太陽電池モジュールの設置

【目的】

消防隊員が太陽光発電の設置された建物屋上で、安全かつ円滑に消火活動ができるようにするため。

【設計指針】

- [26] 大規模屋根(太陽電池モジュールの設置面積が概ね 300m²以上)に太陽電池モジュールを設置する場合、太陽光発電設備は、消防隊員の消火活動が安全かつ円滑に行えるように消防隊員のアクセスや放水可能距離を考慮して、消防活動用通路を設置すること。また、大規模屋根以外(太陽電池モジュールの設置面積が 300m²未満)に太陽電池モジュールを設置する場合、太陽光発電設備は、消防活動に配慮し屋根外周部等に活動用スペースを確保すること。
- [27] 建築物に太陽電池モジュールを設置する場合、太陽電池モジュールは、消防活動で使用する施設周囲への設置を行わないこと。

【設計指針 解説】

[1] 建物火災の際、消防士は建物の屋根に上って消火活動を実施する場合があるが、屋根上全面に太陽電池モジュールが設置されている場合にはそれが不可能となる。したがって、消防隊員が安全かつ円滑に建物屋根にアクセスし、消火活動が行えるよう、屋根外周部には消防活動用通路を確保することで、消防隊員の安全確保はもとより建物や太陽光発電設備の延焼被害拡大の防止にもつながる。東京消防庁「太陽光発電設備に係る防火安全対策の指導基準」は、公共産業用のうち概ね300m²以上の大規模屋根については、例えば図2.6.3-1のように消防活動用通路を設置することを求めており、大規模屋根以外については図2.6.3-2のように活動用スペースを努めて確保することを求めている。ただし、傾斜のない屋上、陸屋根等でメンテナンス用通路が設けられている場合もしくは、転落防止用の壁又は柵が設けられてる場合等、消防隊員が屋根から滑落するおそれが少ない屋根は緩和することができる。また、消防隊員が活用する施設の周囲には、図2.6.3-3のように太陽電池モジュールを設置しないことを求めている。同指導基準では公共産業用の屋根についてのみが対象とされているが、一般住居についても同様に消防隊員の活動スペースがあることが望ましい。

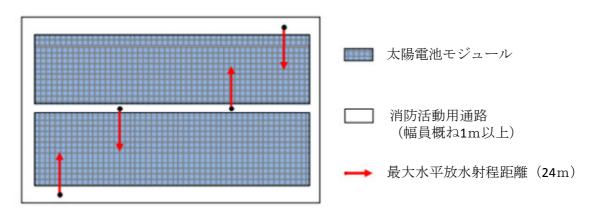


図 2.6.3-1 東京消防庁指導基準 消防活動用通路の設置例 (建物大規模屋根上)

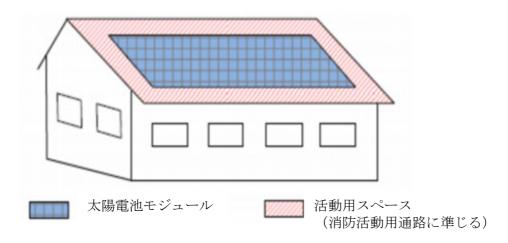


図 2.6.3-2 東京消防庁指導基準 活動用スペースの配置例 (建物屋根上) (出典) 東京消防庁 太陽光発電設備に係る防火安全対策の指導基準

なお、米国でも消防活動の安全の観点から、消防活動用通路の確保が「IFC (International Fire Code) 2012」において規定されている。図 2.6.3-4 に示すように IFC2012 に準拠した建物では、住居用や商業用を問わず、消防活動を考慮して屋上の端周辺に消防活動用通路が設置されており、商業用建物ではベンチレーション(通気)や放水距離を考慮して屋根外周部以外にも消防活動用通路が設置されている。

図 2.6.3-3 米国 IFC2012 に準拠した PV 設置例(左:住居用,右:商業用陸屋根) (出所) Fire Safety Codes and Standards Update Solar Power International, Oct 2013

[2] 東京消防庁の「太陽光発電設備に係る防火安全対策の指導基準」では、消防活動中の消防隊員の感電リスクを低減するため、図 2.6.3-4 のとおり消防活動で使用する施設の周囲への太陽電池モジュールの設置を避けることを求めている。具体的には「非常用の進入口、屋外階段及びその周囲概ね 50cm の範囲には、太陽電池モジュールを設置しないこと。代替開口部には、窓材型の太陽電池モジュールを設置しないこと。代替開口部の周囲 50cm の範囲には太陽電池モジュールを設置しないこと。また、直流配線等は、非常用の進入口、代替開口部、屋外階段及びその周囲 50cm の範囲に設置しないこと。」となっている。ただし、十分な強度をもつ建材一体型又は金属枠で保護され

ている等太陽電池モジュールに接触しても破損して感電する等のおそれが無い場合、直流配線等が 金属管等で保護されている等、直流配線等に接触しても破損して感電する等のおそれが無い場合等 の条件を満足する場合は緩和することができる。

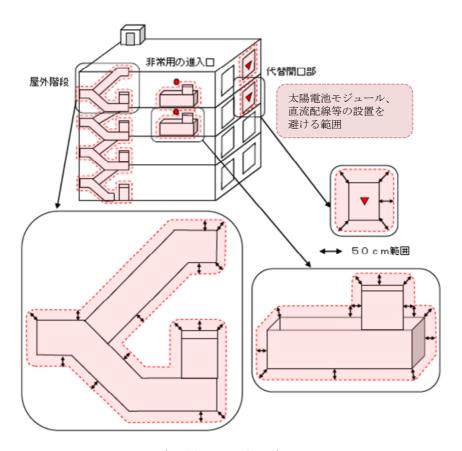


図 2.6.3-4 消防隊員が活用する施設の周囲への設置 (参考文献:東京消防庁 太陽光発電設備に係る防火安全対策の指導基準)

2.6.4 ラピッドシャットダウン

【目的】

直流電路無電圧化により消防隊員の感電や火災の再出火を未然防止すること。

【設計指針】

- [1] 太陽光発電設備は、消防隊員の消防活動時の感電を保護するために、遠隔操作により太陽電池アレイの直下で遮断可能な遮断器を設置することが望ましい。ただし国内では、現状製品が無いため、実現するには、回路を作成する必要がある。
- [2] 太陽光発電設備は、パワーコンディショナ停止直後のバックサージ保護できる装置を設置することが望ましい。

【設計指針 解説】

[1] 「ラピッドシャットダウン」とは、太陽電池アレイの近くに直流遮断器を備え遠隔操作することにより消防隊員が接触する恐れの高い直流電路を受傷可能性の低い電圧に制限する装置である。ここでの遠隔操作とは、太陽電池アレイにアクセスできない場合にも、建物1階などに設置された、例えばパワーコンディショナ等から、遮断器等を遠隔にて操作することを意図している。

火災の際の太陽光発電設備の直流電路の無電圧化については、規制が始まっている国もある。ここでは以下に独と米国の状況を紹介する。両国のラピッドシャットダウンの目的は「消防隊員を感電から保護すること」となっている。

米国において太陽光発電のルールは、National electric code(NEC)の 690 番に記載されることになっており、ラピッドシャットダウンは、NEC の 2014版に初めて記載され、義務となった(番号は 690-12)。NEC では 10 秒以内の無電圧化を要求しているが、現実に対応しているセントラル PCS 製品はほとんど無い(マイクロコンバータには例がある)。これは、ケーブルが太陽電池と切り離されても PCSと繋がっているため、その入力段にあるコンデンサによって 10 秒以上電圧が保持されるからである。構成機材名称については、kill switch(操作スイッチ)、および、contactors (シャントトリップ開閉器)。別名:RSC(rapid shutdown controller)、RSM(rapid shutdown module)認証については、米国ではこのような安全装置の機械の認証が必要である。認証された機器を listed とよぶ。ラピッドシャットダウンに必要な装置は listed であることが、690-12 で求められている。米国の業界状況は、UL 規格が制定されていないため、listed 製品は実在しない(NEC 準拠の自己宣言品は存在する)。最近火災防止抑止のための大規模な改訂が相次いでおり、業界が追い付いていない状況である。また、NEC の細かな内容に対し、消防、業者からは、疑問が呈されている。NEC は 2017 年版に向けての意見を募集している。NFPA 当局の運用方針は、690-12 の内容はまだ完全ではない。したがって、現場の実態に応じて運用すべきである。NEC2017 年版には、現場の実態を反映する予定である. (ルール策定組織の委員長の Brooks 氏の発言)

表 2.6.4-1 ラピッドシャットダウンの整理

		フェットンヤットタリンの登理	
	VDE-AR-E	NEC2014	日本(備考)
	2100-712(2013)	690.12	Barbara Company
適用範囲	建物隣接または建物上 に設置されるシステム	建物隣接または建物上に設置され	日本のシステムにとって必要な
		るシステム.(地上設置システムは	保護範囲を規定する必要があ
		含まれない)	る.
		開放区間をアレイから 3.0m 以内	
遮断区間		~建物内部から 1.5m 以内の区間	日本のシステムにとって最適な 区間を定義する必要がある.
	開放区間に定量規定な	で実現すること.	
	し. 定性規定としては,	アレイから 3m 以上離れたケーブ	
	PCS~アレイの区間.	ルは 30V 以下でなければならず,	
		かつ, 30V 以上のケーブルが建物	
		内に 1.5m 以上あってはならない。	
遮断後のシス テム電圧			電安法(電気用品安全法)に一
	120V以下	30V 以下	般的な電気用品の基準として,
/ 4 电/工			45V 以下の記載がある.
遮断後のエネ	250 1 1/4	24074	
ルギー	350mJ 未満	240VA	_
遮断後の電			施工時の安全確保の為, DC ブレ
圧・エネルギー	100 cts 2:)	10 秒	ーカー遮断後, 3~20 分の作業待
へ移行するま	規定なし		ち時間の注意書きが PCS にある
での時間			こともある.
電圧と電力の	PN,PE,NE 導体間		規定なし.
測定位置		PN,PE,NE 導体間	非接地システムではどうするか
例足位直			が各国共通の課題
	ボタン操作または, 系統無電圧	規定なし.	
トリガ		但し、市販品はボタン操作または	規定なし.
		系統無電圧をトリガとしている.	
ラベル	建物貼付ラベルおよび 消防への提出配置図に て規定されている.	●ラベル仕様	
		光沢仕上げとする.	
		文字は大文字とし、文字高さは最	
		低 9.5 ㎜以上とし、赤色背景に白	
		文字とする.	規定なし.
		●ラベル貼付場所	
		商用電力系統とPVS との両方を有	
		する建物または構造物には、下記	
		文言が記載された銘板または記録	
		簿を恒久的に設置する.	

なお、我が国では現在本規定自体存在しないが、施工業者の点検作業のために、ストリングの直流遮断器を開放後、遮断器より系統側の直流電圧が受傷可能性の低い電圧になるまでの時間に関する注意書きがパワーコンディショナに表示されている場合が多い。ただし、この操作によって遮断器よりもアレイ側の充電部が無電圧化するわけではない。したがって既往機能に加え、アレイ側の無電圧化機能と遠隔操作信号送出機能をパワーコンディショナその他の別置デバイスに追加すれば、わが国の太陽光発電システムについても、米独と同等の安全性を付与することが出来る。今後必要性も含めて消防分野の方々を含めた継続議論が必要である。

[2] パワーコンディショナは通常入力にコンデンサを持っており、停止直後はコンデンサに電荷がたまった状態のため、電路に触ると感電する危険性がある(参考文献 1,3)。また、UL の消防隊員の消防活動時の感電リスク実験の中でも、パワーコンディショナや接続箱に放水した場合のリスクが高いことが知られている(参考文献 2)。

参考文献 1: Heinrich Haeberlin et. al., PV and Fire Brigade Safety: No Panic, but Realistic Assessment of Danger and Possible Countermeasures, 26th, European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2011)

参考文献 2: Robert Backstrom, et. al., Firefighter Safety and Photovoltaic Installations Research Project, 2011)

参考文献 3: Rebekah Hren and Brian Mehalic, Understanding the NEC 2014 and Its Impact on PV Systems, Solar Pro April/May(2014).)

【紹介事項】

[3] 海外において、太陽電池モジュール単位で無電圧化できる製品がある。

【紹介事項 解説】

[3] 太陽電池モジュール単位で無電圧化できる製品のひとつに、太陽電池モジュール単位にインバータを接続する製品(マイクロインバータや AC モジュールとも呼ぶ; AC は交流の意味)がある。これは、太陽電池モジュールの裏面に 300W程度以下のパワーコンディショナまたはインバータを取り付け、交流 200/100V、交流 100Vなどの交流を直接出力し、複数の交流出力を並列接続して低圧配電系統に連系する。この構成では、従来の太陽電池モジュールの直流出力電力をケーブルで配線し、接続箱で集電し、パワーコンディショナに接続するまでの外部の直流回路が存在せず、電流を交流電流のゼロ点で停止できるので直流アークが発生する部分が存在しない。太陽電池モジュールの直流出力とマイクロインバータに接続する最小の配線部分が直流電路なので、この部分の防護が重要である。

太陽電池のアークは、数十Vから発生することを示した実験結果がある。そのため、アークの再発生を抑制するためには、数十V以下すなわちモジュール単位に切り離すことが必要となる(もしくは、太陽電池アレイ全面の光を遮断する)。また、感電の危険を考えた場合にも、最悪の条件を考えた場合、人体抵抗 $500\,\Omega$ に太陽電池アレイが 50Vとしても電流は 100mA となるため、感電危険はのこる。そのため理想的には、太陽電池モジュール単位での切り離しが必要である。しかしながら、アーク発生電圧や消防活動時の無電圧化方法、感電保護の考え方は、今後議論が必要なため、「紹介」とした。また、現状ACモジュールは、国内では製品が存在しない。

3章 機器選定方法

3.1 機器選定編 総論(一般事項)

【目的】

太陽光発電システムにおいて火災事故,感電事故,機器焼損事故が発生する危険性を低減する。この目的を達するため,「電気設備に関する技術基準を定める省令」等の趣旨を理解して,太陽光発電設備の施設における安全確保を図る。

【選定指針】

[28] 電気設備は、感電、火災その他人体に危害を及ぼし、又は物件に損傷を与えるおそれがないように施設すること。

【選定指針 解説】

[3] 「電気設備に関する技術基準を定める省令」第4条にある記述である。

電技令や電技解釈に具体的な記載が無い場合であっても、技術的に検討した結果、人体に危害を及ぼし、又は物件に損傷を与えるおそれが無いようにする必要がある。

また、電技令第16条には、「電気設備は、他の電気設備その他の物件の機能に電気的又は磁気的な障害を与えないように施設されなければならない」ことが示されている。

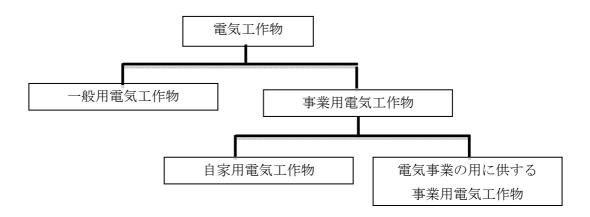
太陽光発電システムにおいて考慮されるべき法令は、電気事業法-電技令だけではない。建築物の電気設備は、建築基準法第2条によれば建築物に該当し、建築基準法の対象となる。国土交通省住宅局建築指導課長が平成23年3月25日に発信した国住指第4936号によれば、平成23年3月25日に閣議決定した政令の改正(太陽光発電設備等を建築基準法が適用される工作物から除外する)が平成23年10月1日から発効した。しかし、国土交通省住宅局建築指導課長が平成24年7月4日に発信した国住指第1152号には、以下の記載があり、建築物に施設された太陽光発電設備は建築基準法の適用対象であることが明記されている。

国住指第1152号(平成24年7月4日)

建築物の屋上に当該建築物に電気を供給するために設置する太陽電池発電設備については、法第2条第3号に規定する建築設備に該当し、設置後の建築物(当該太陽電池発電設備を含む。)は建築基準関係規定に適合する必要がある。

また、民法 717 条は、土地の工作物が他人に損害を与えた場合に、占有者または所有者が賠償責任を負うことを示している。さらに同条 3 項は、占有者または所有者が、設計施工業者に対して求償できる場合があることを示している。

第717条 土地の工作物等の占有者及び所有者の責任


- 1. 土地の工作物の設置又は保存に瑕疵があることによって他人に損害を生じたときは、その工作物の占有者は、被害者に対してその損害を賠償する責任を負う。ただし、占有者が損害の発生を防止するのに必要な注意をしたときは、所有者がその損害を賠償しなければならない。
- 2. 前項の規定は、竹木の栽植又は支持に瑕疵がある場合について準用する。

3. 前二項の場合において、損害の原因について他にその責任を負う者があるときは、占有者又は所有者は、その者 に対して求償権を行使することができる。

これらの規定は、国民の財産権(憲法第29条第1項の保障対象、ただし同条第2項で公共の福祉によって制限される可能性)を守るために、主権者である国民自身が、国民に課した義務である。

参考のため、電気事業法・電技令・電技解釈に示された手続きの概要を解説する。

電気事業者の電力系統に接続される太陽光発電設備は電気事業法において「電気工作物」とされる。電気工作物の種類は、電気事業法第38条に示されており、それを以下に図示した。

太陽光発電設備は、出力 50kW 未満で電圧 600V 以下のものは「一般用電気工作物」に該当し、出力 50kW 以上のものは「事業用電気工作物」の1種である「自家用電気工作物」に該当する(電事法第 38 条)。どちらの場合も「電気設備に関する技術基準を定める省令」(電技令)に適合するよう維持する必要がある。すなわち、「事業用電気工作物」が電技令に適合しなければならないことは、電事法第 39 条に記載されている。また、「事業用電気工作物」が電技令に適合しない場合は、主務大臣が是正命令を発することができる(電事法第 40 条)。

また、「一般用電気工作物」が電技令に適合しなければならないこと、および「一般用電気工作物」が電技令に適合しない場合は主務大臣が是正命令を発することができること、が電事法第 56 条に記載されている。

3.2 太陽電池モジュール選定

本節では、危険防止の観点から、太陽電池モジュールが満たすべき要件、太陽電池モジュールの選定において考慮しなければならない諸注意点を説明する。これらは多岐にわたるが、太陽光発電は新しい技術であるため、法令による規制が確立していない。法令によって規制されている項目は、機械的強度と絶縁性だけである。しかし、この2項目に関しても、その法令要件が安全確保の目的にとって十分であるかは、科学的にも結論が得られていない。機械的強度と絶縁性以外の項目については、要件を定めた法令は存在していないが、これらの中には、JIS 規格、IEC 規格が存在しているものがあり、規格類を拠り所にモジュール選定を行うことができる。しかし、安全の観点からこれらの規格類が安全確保の目的を十分としているかは科学的にも結論が得られていない。さらに、安全上注意が必要と考えられるにもかかわらず、規格類も整備されていない項目もある。

この様な状況に鑑み、本文書は安全のための要求性能の項目を挙げた。実際に本文書が運用されるモジュール選定の場における実効性を確保するため、具体的な数値等の基準は、法令に関係するものおよび、規格類に関するものを挙げている。

3.2.1 太陽電池モジュール選定 (機械的強度)

【目的】

太陽電池モジュールの電気事故を回避するため、風の負荷重による飛散のおそれを低減する。また、雪または風の正荷重によって太陽電池モジュールが陥没し、太陽電池モジュールの裏面が地絡するなどして電気事故が発生するおそれを低減する。

【選定指針】

[8] 太陽電池モジュールの耐荷重に注意を払い、使用環境において供用期間内に要求される耐荷重性能を明らかにして、それに適する太陽電池モジュールを選定すること。このための具体的な指針として、次を例示する。建築基準法第2章20条、建基施行令第3章86,87,88条に示す雪、風、地震荷重に耐えられる耐荷重性能を持つ太陽電池モジュールを選定すること。

【選定指針の解説】

[1] 太陽電池モジュールの耐荷重要件は、2種類ある。ひとつは規格上の荷重に対する電気性能低下の限界値であり、これは当事者間で定めることが出来る(約定)。もうひとつは、建築基準法および電技における終局荷重値に対する耐力である。

約定のうち,電気性能低下の限界値を確かめる方法は,JISC8990 および JISC8991 における規約 案がある。JISC8990 および JISC8991 における機械的荷重試験(10.16) に示す試験は,以下の通り である。

「製造業者が指示する方法によって、丈夫な支持構造体にモジュールを取り付ける(様々な可能性がある場合、固定点間の 距離が最大となる、最悪の方法を用いる。)」「モジュール表面に一様荷重を 2400Pa になるまで徐々に加え、1時間保 持する。」「モジュールを丈夫な支持構造体から取り外すことなく、モジュールの入り面に同じ手順で加重を適用す る。」「それを3サイクル試験する」

また同 JIS では、以下とされることから、この試験により確認されることは、電気性能を保証する 荷重であり構造的耐荷重(終局耐力)ではない。

「2400Pa は、突風に対する安全係数3 を加味した130km/h の風圧(約±800Pa)に相当する。」とされる。他方、この試験における要求事項は「試験中に開放故障が検出されてないこと」「著しい目視上の欠陥がないこと」「最大出力の低下が試験前の測定値の5%以下であること」「絶縁抵抗が、初期測定の場合と同様であること」

また、JISC8990 および JISC8991 における機械的荷重試験(10.16) に以下の記述がある。

「雪および氷の重荷重に耐えるが必要である場合, 最後にモジュール表面の荷重を 2400Pa から 5400Pa に増やす」。

これは、電気性能が、雪および氷の重荷重に対して耐えることの商業上の証明が必要である場合、 試験の最後にモジュール表面の荷重を 2400Pa から 5400Pa に増やすことをもって当該荷重に耐える ことが証明できることを示している。また、同 JIS に以下の記述がある。

「モジュールが 2400Pa を超える雪又は風荷重を伴う地域で一般的に使用する場合の適正確認を必要とする場合、2400Pa より厳しい試験条件が必要となる可能性がある。例えば、雪荷重に対する要求事項は、該当する建築基準法施行令など又は雪荷重マップから決定することができる」。

これは、モジュールが 2400Pa を超える雪又は風荷重を伴う地域で一般的に使用する場合、2400Pa より厳しい試験条件が必要であり、雪荷重に対する要求事項は、該当する建築基準法施行令など又は雪荷重マップから決定する必要があることを示している。

前述の通り、JIS の試験により確認されることは、電気性能を保証する荷重であり構造的耐荷重(終局耐力)ではない。太陽電池モジュールの耐荷重性能は、この試験の要求事項を満足しただけでは、現実の風荷重・積雪荷重を下回っている場合が少なくない。また JIS、IEC 規格は任意規格であり法律ではない。したがって、「JIS/IEC 耐荷重>法定耐荷重」でない限り、太陽電池モジュールの耐荷重性能が要求されるクライテリアは、JIS、IEC 規格に示す耐荷重としてはならず、建築基準および電技令の耐荷重を優先させる必要がある。JIS/IEC の約定のみに依拠すると以下の図 3.2.1-1、図 3.2.1-2 のような直流事故を生じる恐れがある。図 3.2.1-1 は積雪加重によりガラス割れが発生し、その事故点からモジュール内のアークが発生し、部分焼損が発生した例である。また図 3.2.1-2 は、風邪による反復加重により架台とモジュール間の地絡が発生し、モジュールが焼損した例である。

図 3.2.1-1 積雪荷重によるガラス割れによるモジュールアーク事例 (参考文献: Photon international 誌)

図 3.2.1-2 風による反復荷重の影響によるモジュールアーク事例 (参考文献: BP solar Wohlgemth)

建築基準法 20 条および改正建基令施行規則第一条の三より,モジュールの耐力は「終局耐力> 設計荷重」である必要がある。

建築基準法 20条

「建築物は、自重、積載荷重、積雪荷重、風圧、土圧及び水圧並びに地震その他の震動及び衝撃に対して安全な構造のものとして、次の各号に掲げる建築物の区分に応じ、それぞれ当該各号に定める基準に適合するものでなければならない。

ここに終局耐力は、建築基準法で定められた風荷重、積雪荷重に対して、電気事故または構造事故を生じないこと、即ち、「飛散・地絡など有害な損傷を生じない」必要がある。したがって、使用性の低下は問題ではない。例えば、太陽電池モジュールのガラス割れ自体は終局とは限らない。他方、ガラスが割れた上にさらに地絡する、発電面がフレームから脱落するといった二次被害を生じうる状態は終局と言える。即ち、終局はシステムを構成する他要素との関係で定まる。

建築基準法第 20 条は、建築物の耐荷重性能を規定するものである。建築基準法における建築物は、建築設備を含む(同法第 2 条)ため、建築物に設置される太陽電池モジュールは、同法第 20 条によって規制される。一方、国住指 4936 号は、同法から地上に設置される太陽電池モジュールを除外している。しかし、民法の規定による「安全配慮義務」を考慮すると、地上に設置される太陽電池モジュールについても、建築基準法第 20 条の耐荷重性能を備えた設計が安全確保となる

民法における「安全配慮義務」とは、法律学小辞典第4版(有斐閣、2004年)によると、一定の法律関係にある者が、互いに相手方の身体・生命・財産を害さないように配慮すべき"信義則"上の義務であり、もともとは、雇用契約について労働者保護のための政策上認められた特殊な付随的義務として観念されていた。しかし、判例によって、より一般的に「ある法律関係に基づいて特別な社会的接触の関係に入った当事者間において、当該法律関係の付随義務」として認められる(最判昭和50・2・25 民集29・2・143)とされ、その射程は診療契約・在学契約・請負契約など多方面に広がっている。法律的な根拠は、民法第1条第2項に示された信義則にある。太陽光発電設備の受発注の関係は、安全配慮義務を伴う必要があり、設置形態を問わず耐荷重性能を確認する必要がある。

さらに、民法 717 条によれば、土地の工作物の設置または保存の瑕疵による損害は、その占有者または所有者が賠償の責任を負う。例えば、ブロック塀が通行人を圧死させた事案の判例を見ると、ブロック塀程の物であっても土地の工作物とされている。同様に、判例上は、自動販売機、プール、井戸、踏切などもまた、土地の工作物とされる。このような状況から太陽光発電設備もまた土地の工作物であると考えられる。すなわち、「本来の安全性を欠く」というだけで、契約関係に無い第三者を加害した場合も不法行為となる。したがって、土地工作物の責任の観点からも、設置形態を問わず耐荷重性能を確認する必要がある。

すなわち、太陽光発電設備の設置業者は、太陽電池モジュールが損壊して設備所有者が損害を被 らない様に配慮する必要があり、また設備所有者の安全が脅かされない様に配慮する必要があり、 さらに通行人等第三者を加害しない必要がある。そして、どの程度まで配慮する必要があるかにつ いては、建築物に設置される太陽電池と同等の耐荷重性能が必要である。 なお、地上に設置された太陽電池モジュールの損壊によって第三者を加害した場合、設備設置業者の責任は不明確であるのに対し、設備所有者は(たとえ無過失でも)責任を負う。したがって、第三者に被害が及ぶ恐れがある場合、道義上からも、求償の手段を確保するためにも、設備所有者は、発注者に対して、太陽電池モジュール耐荷重性能を約定に含めることを強く勧める。

太陽電池モジュールの終局耐力を確かめる方法は、砂袋、煉瓦、材木などのウェイトによって加力する試験が考えられる(図 3.2.1-3)。木材による載荷は、ガラスに撓みを生じさせないが、実際の風荷重ではガラスが撓む。ガラスの撓みは、アルミフレームも変形させるため、架台—アルミフレームの締結強度と、アルミフレーム—ガラスの締結強度との両者に影響を及ぼす。したがって、終局耐力試験は、木材による載荷よりも砂袋による試験が適切である(図 3.2.1-4、図 3.2.1-5)。

表 3.2.1-1 モジュール載荷試験の目的と方法

目的 回避されるべき危険 試験方法 風による飛散 (ケーブルの引きちぎれ、他モジュールへの 突き刺さりによる地絡・断線の原因) 載荷方法の例 危険を生じない 耐荷重を求める(建築基準法 ●砂袋 雪によるガラスの落下またはガラス陥没 ●空気圧 (屋根面との接触による地絡の原因) 電技第4条) ●吸盤 ●パレット 風または雪によるガラス割れ (タブ線の断線または短絡. ジャンクションボックスの破損 発電性能が維持 によるBPR故障の原因) される耐荷重を 求める(IE62400 研究中の試験法 タブ線切れ、セル割れ または5400Pa) ●DML試験 (BPRに常時通電することでBPR開放の原因) (載荷⇔除荷の 反復試験)

モジュール載荷試験

図 3.2.1-3 木材による終局耐力試験

図 3.2.1-4 砂袋による終局耐力試験

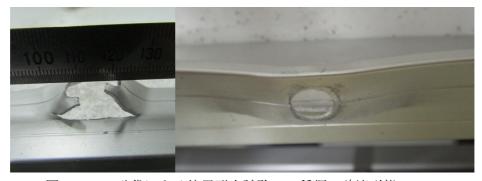


図 3.2.1-5 砂袋による終局耐力試験, 二種類の破壊形態

【紹介事項】

- [2] 太陽電池モジュールの信頼性試験方法の一つに、通電状態での動的荷重試験方法が研究されている。
- [3] 太陽電池モジュール表面に積もった雪氷が太陽電池モジュール表面を滑落する場合、太陽電池モジュールの下側にあるアルミフレームが変形しない太陽電池モジュールを選定することは、 地絡事故の恐れを低減できることが知られている。

【紹介事項の解説】

- [2] 太陽電池モジュールの法令的な耐荷重要件は、静的な値であり、太陽電池モジュールの認証試験 (JIS C8990, JIS C 8991) における載荷も静的な試験である。しかしながら、太陽電池モジュールの実使用環境では風の変化により荷重も変動しており、正圧と負圧が入れ替わっている。太陽電池モジュールの正負圧を周期的に模擬する試験方法は、JISC8917 および IEC62782(未発効)の中に「周期的に変動する積荷試験(ダイナミックメカニカルロード試験)がある。この試験方法の負荷条件や試験方法は、継続して議論が行われている。なお、積荷試験中は、常に導通を確認することになっているが、太陽電池セル側だけでなくバイパス回路の導通を確認する試験も併せて実施する方法は、太陽電池モジュールの安全性の確認に有効である。
- [3] 太陽電池モジュール表面に積もった雪氷が、モジュール表面を滑落する時に、アルミフレームを軒側に押し曲げると(または押し倒しすと)と、これによってモジュールガラス面が屋根に接触して、地絡事故が発生することが懸念される。

3.2.2 太陽電池モジュール (絶縁性)

【目的】

太陽電池モジュールの絶縁が不十分であることによる、火災事故や感電事故を未然防止するため。

【選定指針】

使用環境下で絶縁性能が失われないモジュールを選択すること。このために、以下が考えられる。

- [1] 電技解釈 16条5項に示す絶縁性能を持つ太陽電池モジュールを選択すること。
- [2] 最大使用電圧に対応した耐圧性能を持つ太陽電池モジュールを選定すること。
- [3] JIS C 8990 または 8991 に含まれる、高温高湿試験、温度サイクル試験後の湿潤漏れ電流 試験の要件事項を満足したもの、もしくはそれ以上の性能を持つ太陽電池モジュールを選定す ること。
- [4] 太陽光発電設備を構成する全数の太陽電池モジュールは、工場出荷時に耐圧試験を実施した太陽電池モジュールを選定することが望ましい。

【選定指針の解説】

[1] 太陽電池モジュールに対する絶縁性能は、電技解釈第16条5項に以下の記述がある。

電気設備の技術基準の解釈 第16条5項(平成26年7月18日改正版)

太陽電池モジュールは、次の各号のいずれかに適合する絶縁性能を有すること。

- 一 最大使用電圧の1.5 倍の直流電圧又は1 倍の交流電圧 (500V となる場合は,500V) を充電部分と大地との間に 連続して10 分間加えたとき,これに耐える性能を有すること。
- 二 使用電圧が低圧の場合は、日本工業規格 JISC8918 (1998) 「結晶系太陽電池モジュール」 (JISC8918(2005)にて 追補) の「6・1 電気的性能」) 又は日本工業規格 JISC8939 (1995) 「アモルファス太陽電池モジュール」 (JISC8938(2005)にて追補) の「6・1 電気的性能」に適合するものであるとともに、<u>省令第58条</u>の規定に準ず るものでなくてはならない。

また、電技解釈解説(第16条5項)に以下の記述がある。

電気設備の技術基準の解釈の解説 P19 (平成 26 年 7 月 18 日改正版)

試験電圧は、最大使用電圧の 1.5 倍の直流電圧又は実際に試験する際の便宜のため 1 倍の交流電圧とした。最大使用電圧(直流)の 1 倍の交流電圧としたのは、波高値= $\sqrt{2}\times$ 交流電圧実効値 $\Rightarrow 1.5\times$ 直流電圧となり、同等の絶縁強度を要求することになるためである。第 5 項は、太陽電池モジュールの絶縁性能を定めたもので、第一号の試験電圧の考え方は第 4 項と同じである。第二号は、日本工業規格 JISC 8918(1998)及び JISC 8939(1995)を引用し、B解釈で新たに定めた規定である。これらの規格では、太陽電池モジュールは

(試験電圧) =2× (最大システム電圧) +1,000V

の直流電圧で1分間の試験に耐えることとなっており、これに合格した太陽電池モジュールであれば、第一号の 試験にも十分耐えるものと考えられる。また、現地据付工事後の絶縁性能を確認するため、電気使用機械器具に 適用される省令第58条の絶縁性能に準じることとしている。なお、第4項及び第5項は、最大使用電圧が高圧以 下のものについて規定している。これは、現時点で特別高圧の燃料電池及び太陽電池が製造されていないからで ある。

電気設備に関する技術基準を定める省令 第58条

(低圧の電路の絶縁性能)

電気使用場所における使用電圧が低圧の電路の電線相互間及び電路と大地との間の絶縁抵抗は、開閉器又は過電流遮断器で区切ることのできる電路ごとに、次の表の上欄に掲げる電路の使用電圧の区分に応じ、それぞれ同表の下欄に掲げる値以上でなければならない。

電路の使用電圧の区	絶縁抵抗値	
三百ボルト以下	対地電圧(接地式電路においては電線と大地との間の電	<i>〇・一メガオーム</i>
	圧、非接地式電路においては電線間の電圧をいう。以下	
	同じ。)が百五十ボルト以下の場合	
	その他の場合	<i>○・二メガオーム</i>
三百ボルトを超えるもの		〇・四メガオーム

[2] 最大使用電圧に対応した耐圧性能を持つ太陽電池モジュールを選定することは、安全確保の最低限の要件である。詳細は、[1]に示した通りである。JISC8918 に示す耐電圧性能は以下のように JISC8990 の 10.3(絶縁試験)とされる。

表 4- 絶縁性能

項目	性能・試験方法		
絶縁抵抗	JIS C 8990 の 10.3 (絶縁試験) に基づく。		
耐電圧	JIS C 8990 の 10.3 (絶縁試験) に基づく。		
衝撃電圧	JIS C 8992-2 の 10.5 (インパルス電圧試験	MST 14) に基づく。	

また、JISC8990 に示す絶縁試験は以下とされる。

- a) モジュールの出力端子を短絡し、電流制限付き直流絶縁試験器の正極端子に接続する。
- b) モジュールの露出金属部分を、試験器の負極端子に接続する。モジュールにフレームがない場合、又はフレーム の導電性が低い場合には、モジュールのエッジ回り及び裏面に導電性のはく(箔)をかぶせる。そのはく(箔)を 試験器の負極端子に接続する。
- c) [最大システム電圧(製造業者がモジュールに表示した最大システム開放電圧)] の2 倍+1 000 V に等しい電圧 まで、 $500 \, V \cdot s$ -1 以下の速さで上昇させ、この電圧に1 分間保つ。最大システム電圧が $50 \, V$ 以下のときは、印加電 圧を $500 \, V$ とする。
- d) 印加電圧を0まで下げ、モジュールを試験器に接続したままで試験器の端子間を短絡し、モジュールの残存電荷を放電させる。
- e) 短絡回路を外し、モジュールを試験器から取り外す。
- f) b) と同様に接続した試験器で、モジュールに 500 V 以上の直流電圧を印加し、絶縁抵抗を計測する。500 V 又はモジュールの最大システム電圧のいずれか大きい方の電圧まで 500 V·s

- -1以下の速さで上昇させる。この電圧に2分間保つ。その後、絶縁抵抗を測定する。
- g) 印加電圧を0まで下げ、試験器の端子間を短絡し、モジュールの残存電荷を放電させる。
- h) 短絡回路を外し、試験器をモジュールから遮断する。

注記 モジュールが金属フレーム又はガラスのスーパーストレートをもたない場合, 絶縁試験は, 10.3.4 b) に従い モジュールの表面に配置した金属板又は金属はく(箔)を用いて繰り返す。

10.3.5 要求事項

絶縁試験の要求事項は、次による。

- 絶縁破壊がない, 又は10.3.4 c) において表面にトラッキングが生じない。
- 面積が 0.1 m2 未満のモジュールの場合, 絶縁抵抗は 400 MΩ 以上でなければならない。
- 面積が $0.1 \, m2$ 以上のモジュールの場合,測定した絶縁抵抗とモジュール面積との積は, $40 \, M\Omega \cdot m2$ 以上でなければならない。
- [3] JIS C8901 および 8991 には、使用環境下での劣化を模した試験として、太陽電池モジュールを 85℃85%RH に 1000 時間保持する高温高湿試験と、太陽電池モジュールを-40℃と+85℃の間で 200 回往復させる温度サイクル試験が含まれている。前記 JIS には、この劣化加速後に、モジュールを 所定の水系の液体に浸漬し、絶縁を試験する方法が示されおり、これらの規格試験の要件を満足することが必要である。
- [4] 太陽電池モジュールの工場出荷時の耐圧試験条件は、以下の規格と同等以上であることが必要である。

①結晶: JISC8918, JISC8990

②薄膜: JISC8991, JISC8938

電気事業法施行規則第73条の4に定める使用前自主検査の方法の解釈に示す通り,工事計画の提出が必要な2MW以上の発電所では,電技第16条第5項に適合した太陽電池モジュールを採用することにより,現地での試験が緩和されている。

電気事業法施行規則第73条の4に定める使用前自主検査の方法の解釈では以下の記述がある。

電気事業法施行規則第73条の4に定める使用前自主検査の方法の解釈(平成25年3月14日)

(4) 絶縁耐力試験

(a) 検査方法

電力回路や機器の使用電圧に応じて電技解釈第14条から第16条までに定められている試験電圧を印加する。 また、特別高圧の電路、変圧器の電路及び器具等の電路の絶縁耐力を電技解釈第15条第4号、第16条第1項 第2号、第16条第6項第3号又は第16条第6項第5号に基づき絶縁耐力試験を実施したことを確認できたも のについては、常規対地電圧を電路と大地との間に連続して印加することができる。

ただし、電技解釈第16条第5項第2号に適合する絶縁性能を有することが確認できた太陽電池モジュールについては、現地での絶縁耐力試験は省略できるものとする。

なお、常規対地電圧とは、通常の運転状態で主回路の電路と大地との間に加わる電圧をいう。

(b) 判定基準

試験電圧を連続して10分間加えた後、絶縁抵抗測定を行い絶縁に異常のないこと。また、電技解釈第15条第4号、第16条第1項第2号、第16条第6項第3号又は第16条第6項第5号によって実施した場合には、常規対

地電圧を連続して10分間加え、絶縁に異常がないこと。

ただし、JISC8918、JISC8990、JISC8991 および JISC8938 で示される試験は、一般的に型式試験のため、出荷された個々の太陽電池モジュールの絶縁性能のばらつきは分からない。したがって、全数の太陽電池モジュールに工場内で絶縁耐力試験を実施することは、型式検査では見落とされる個々の太陽電池モジュールの絶縁性能のばらつきによる絶縁不良の恐れを低減できる。

なお、JISC8918 の解説(受渡試験における耐電圧試験)には、以下の記述がある。したがって、 全数検査は「試験電圧を規定値の1.2 倍にした1秒間の印加の試験」条件以上の試験を推奨する。

受渡試験における耐電圧試験旧規格の絶縁の規定はJIS C 0703 に基づいており,運用上,試験電圧を規定値の1.2 倍にした場合は,1 秒間の印加を認めていた。また,J60065 の附属書N においても完成品検査としてこの手法を用いてもよいとされていることから,この規格でも,試験電圧を規定値の1.2 倍にした場合は,1 秒間の印加で,JIS C 8990 の10.3 (絶縁試験) の1 分間印加と同等とした。ただし,これは受渡試験だけに適用する簡易的方法であることに留意する必要がある

【紹介事項】

[5] JISC8990 および JISC8991 の湿潤漏れ電流試験において、モジュール耐電圧以上の電圧を使用した試験の要求事項を満足した太陽電池モジュールを選択した場合、安全性が高いことが知られている。

【紹介事項の解説】

[5] 太陽電池モジュールの性能試験規格 (JIS C8990, JIS C 8991, IEC61215, IEC61646) に示す絶縁試験は, 乾燥状態のアルミフレームと電路の間に「システム電圧×2+1000V」の電圧を印加する方法である (JIS C8992-2, IEC61730 ではさらにその 2 倍の電圧を加える)。しかしながら、雨天時や結露がある 場合、太陽電池モジュール外面全体が濡れて伝導性を持つため、太陽電池モジュールは、絶縁不良 に陥る恐れがある。太陽電池モジュールの絶縁不良の例は、バックシートおよび封止材の欠陥を通 した絶縁不良、端面シールおよび封止の不良個所からの水分浸入による絶縁不良、端子箱貼り付け 部のシール不良個所からの水分浸入による絶縁不良、端子箱へのケーブル貫入部のシール不良個所 からの水分浸入による絶縁不良などがある。太陽電池モジュールが濡れた場合を考慮した絶縁試験 は、規格(JIS C8990, JIS C 8991, IEC61215, IEC61646)に示す湿潤漏れ電流試験がある。この試験は、 所定の導電度と表面張力を持つ液にモジュールを浸漬して、絶縁抵抗を測定する試験方法である。 しかしながら、絶縁抵抗を測定する試験電圧は、上述した乾燥状態での絶縁試験に使用する電圧と 比較して著しく低く,最大システム電圧と同じである。したがって,規格(JIS C8990, JIS C 8991, IEC61215, IEC61646) に示す湿潤漏れ電流試験は、電圧に関する安全率が与えられていない。その ため、湿潤漏れ電流試験の印加電圧を乾燥状態での絶縁試験に使用する電圧(「システム電圧× 2+1000V」)を利用した試験は、雨や結露時でも乾燥状態と同等の安全率をもって絶縁を確保するこ とを意味する。

3.2.3 太陽電池モジュール (バイパス回路 (バイパスダイードを含む))

【目的】

太陽電池モジュールに含まれているバイパスダイオードが開放故障すると、クラスタが発電する電圧を上回る電圧損失が、低電流セルやモジュール内の導通不良箇所において発生し、それによる発熱で火災を生じることが懸念させる。この危険を未然防止するため、バイパスダイオードの耐久性を試験する必要がある。

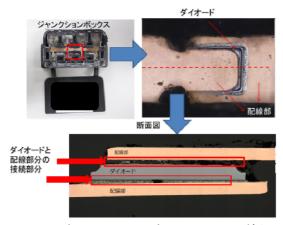
【選定指針】

- [1] JIS C8990 または JIS C8991 に示された、バイパスダイオード試験の要件事項を満足した もの、もしくはそれ以上の性能を持つ太陽電池モジュールを選定すること。
- [2] 太陽電池モジュール選定時にバイパス回路が正常に動作するか確認された太陽電池モジュールを選定することが望ましい。

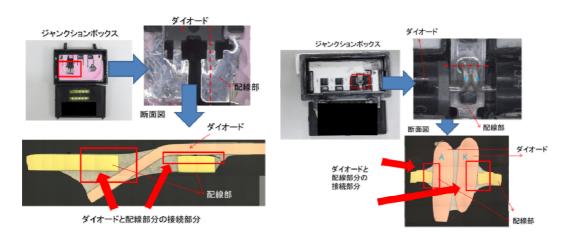
【選定指針の解説】

- [1] JIS C8990 および JIS C 8991 には、バイパスダイオード試験として、モジュールの公称短絡電流を1時間バイパス回路に通電し、その間バイパスダイオードの温度が、ダイオードメーカが定めた許容値を超えないこと、モジュールの公称短絡電流×1.25を1時間バイパス回路に通電し、バイパス回路が機能を維持できることを確認する試験が含まれている。この試験法における通電時間は1時間に過ぎず、実際のモジュールが曝される条件に比較すれば穏やかであり、この試験法が十分であるかは不明である。しかし、この試験に合格することは必要条件である。
- [2] 太陽電池モジュール出荷時に確認する最終的な試験は、出力特性や絶縁特性であるため、バイパス回路が動作するかの確認は通常行われない。出荷時にバイパス回路が正常に動作するか確認されたモジュールを使用することは、出荷時のバイパス回路不良の恐れを低減できる。ただし、これまでのバイパス回路の開放故障の事例は、製造時に発生したか、設置後に発生したかは明確にはなっていないが、安全確保の観点からモジュール選定時に確認できることが望ましいとした。正常に動作するかの確認方法は、例えば、モジュール選定時に抜き取り検査などでバイパス回路の正常動作を確認する方法が考えられる。なお、設置者・施工者が現地設置時やサンプルの屋外等での確認

【紹介事項】


- [3] 太陽電池モジュール用バイパスダイオードの熱暴走試験「Photovoltaic module bypass diode thermal runaway test」が研究されている。
- [4] 太陽電池モジュールのバイパス回路の信頼性確認のために、バイパス回路に通電した状態での温度サイクル試験を行う方法が研究されている。
- [5] 太陽電池モジュール用のバイパス素子に PN ダイオードとショットキーバリアダイオードを 利用した太陽電池モジュールがある。
- [6] 太陽電池モジュールのバイパス回路の開放故障時にフェールセーフで故障する回路が研究されている。

方法は、第4章の記載を参考にして頂きたい。


【紹介事項の解説】

- [3] バイパス回路に利用されるバイパスダイオードは、バイパス動作をしている状態から通常の状態に変化した場合、バイパスダイオードが熱暴走する恐れがある。これまでに、屋内の試験において、熱暴走によるバイパスダイオード故障が再現されている(参考文献 JET QA フォーラム資料)。そのため、世界各国の専門家が太陽電池モジュールの長期信頼性に関する諸問題を議論するために発足した国際 QA フォーラム(International PV Module Quality Assurance Forum)において、バイパスダイオードの熱暴走試験が検討され、「Photovoltaic module bypass diode thermal runaway test」が IEC に規格が提案された。熱暴走が心配されるケースでは、試験条件を参考にすると良い。現在、本規格は、IEC において議論が継続中である。
- [4] 太陽電池モジュールの端子箱内に含まれるバイパス回路は、火災につながる致命的なホットスポットを抑制する機能であることから、太陽光発電設備の安全にとって重要な要素である(参考付録 A)。これまでの故障事例のひとつにダイオードと配線の接合部(図 3.2.3-1 を参照)のハンダはがれによる開放故障が確認されている。したがって、バイパス回路の信頼性を向上させるためには、バイパス素子(通常ダイオード素子が利用される)単体の信頼性の向上とともに、バイパス回路内部の接合部を含めた回路全体の信頼性向上が重要である。しかしながら、これまでの試験規格は、ダイオード素子と配線接合部のハンダを直接の対象とした試験条件とはなっていない。そこで、バイパス回路への通電と温度サイクルを組み合わせることにより、図 3.2.3-1 に示すダイオードと配線接合部への温度サイクルによるハンダはがれ故障の確認を目的とした試験方法が検討されている(参考文献)。現在は研究レベルであり、試験条件など詳細は、検討が必要である。

参考文献:一般社団法人日本太陽エネルギー学会 太陽光発電部会 第 9 回セミナー 「太陽光発電システムの火災リスク対策における現状と課題(3)資料

(a) BPR 内のバイパスダイオードと配線例 1

(b) BPR 内のバイパスダイオードと配線例 2 (c) BPR 内のバイパスダイオードと配線例 3 図 3.2.3-1 BPR 内のバイパスダイオードと配線およびその接続部

[5] 2005年に太陽電池モジュールの型式認証に利用される試験規格である JIS C8990(2009)(結晶シリコン太陽電池) (IEC61215 Ed.2) および JIS C8991 (薄膜太陽電池モジュール) (IEC61646) に、「バイパスダイオード温度試験」が追加された。その結果市場では、バイパスダイオード温度試験の通電時の温度要件事項を満足するために、バイパス回路に組み込まれるダイオード素子は、従来主流であった PN ダイオードから順電圧損失の低いショットキーバリアダイオードが採用されている。ショットキーバリアダイオードは、PN ダイオードに比べて耐圧が低いため、雷サージによる故障の恐れが指摘されている[参考文献 1]。また、ショットキーバリアは、PN ダイオードと比べて逆電流が大きいため、熱暴走(ダイオードの電力損失による発熱を放熱しきれず温度が上昇しつづけ最終的に破壊してしまう現象)による故障の恐れがある。他方、PN ダイオードは、通電時の温度上昇がショットキーバリアよりも大きいことから、バイパス回路内の温度サイクルが大きくなることが懸念されるため、故障事例にあったダイオードと配線部の接続部における開放事故の恐れがある。

実フィールドにおけるバイパス素子の故障(特に開放故障)の事例は、ショットキーバリアと PN ダイオードとの利用による有意な差を確認されていない。その理由としては、積極的な実態把握調査が行われていないこと、および通常の運転状態では発見が困難であること(太陽電池モジュールの保安を参照)であるため、継続して調査が必要である(参考文献 2)。現状では、ショットキーバリアダイオードと PN ダイオードは、どちらがバイパス回路の開放事故を防止するために有効かどうかは分かっていない。

参考文献 1:H.Haeberlin et. al, Measurement of damages at bypass diodes by induced voltages and currents in PV module caused by nearby lightning currents with standard waveform, proceedings of 23rd European photovoltaic solar energy conference, 2008)

参考文献 2: H. Laukamp, et. al., PV fire hazard – analysis and assessment of fire incidents, proceedings of 28th European photovoltaic solar energy conference, 2013)

[6] バイパス回路が開放故障しクラスタに異常な逆電圧が発生した場合に、「バイパスのバイパス」 の発熱を利用して電流を遮断する方法の研究がある。これにより、バイパス回路開放に伴う、火災 につながる致命的なモジュール内のホットスポットヒーティングを回避することができる(図

3.2.3-2)。現在は製品化されておらず、研究レベルである。本項の内容は、参考となる先進技術のため「紹介」とした。

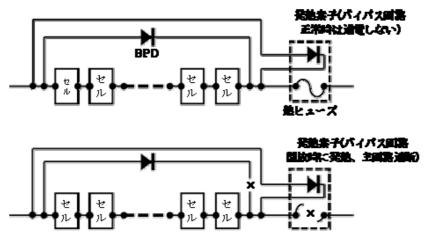


図 3.2.3-2 太陽電池モジュールのバイパス回路の開放故障時にフェールセーフで故障する回路

参考文献:一般社団法人日本太陽エネルギー学会 太陽光発電部会 第 9 回セミナー 「太陽光発電システムの火災リスク対策における現状と課題(3)資料」

3.2.4 太陽電池モジュール (電流耐性)

【目的】

太陽電池モジュール内を流れる電流に起因する発熱のよって、太陽電池モジュールが焼損することを未然に防止する。

【選定指針】

[1] JIS C8992-2 に含まれる過電流過負荷試験の要件事項を満足したもの、もしくはそれ以上の性能を持つ太陽電池モジュールを選定すること。

【選定指針の解説】

[1] ある太陽電池ストリングに、他のストリングから電流が逆流した場合は、当該ストリングには逆方 向過電流が流れる恐れがある。過電流防止装置として、DC ヒューズを使用する場合は、モジュー ルはそのヒューズ定格までの電流に耐えることが必要である。逆流防止ダイオードを使用している 場合、逆流防止ダイオードが正常であれば、逆方向過電流は発生しないが、逆流防止ダイオードが 短絡故障した場合は、並列接続されているストリング数分の電流が、当該ストリングに逆流する恐 れがある。

JIS C8992-2 には、モジュール公称短絡電流×1.35 の電流に耐えることを確認する試験が含まれているが、この電流値を上記の想定に従って増加し、同様の試験を実施することが必要である。

【紹介事項】

[2] 太陽電池モジュールのバイパス回路がインターレースになっている場合、モジュール 1 枚から短絡電流の 2 倍の電流が流れる恐れがあるため、過電流設計に注意が必要なことが知られている。

【紹介事項の解説】

[2] バイパス回路のインターレースは、図 3.2.4-1 右にあるバイパス回路とセル直列配線の構成方法のことである。太陽電池モジュールは、定格の Isc 以上の電流は出力できない(日射が 1.0 以上の場合は、定格以上の Isc を出力できる)。しかしながら、インターレースのバイパス回路を持つ太陽電池モジュールの場合は、モジュール内の日陰分布によって、モジュール 1 枚から定格 Isc の 2 倍の電流を出力することができる。ここで、図 3.2.4-2 に一例を示す。Isc は 8A と想定し、真中のセルストリングの電流が半分となるような日射条件を想定している。この場合、太陽電池モジュールの電流・電圧特性は、図 3.2.4-2 右に示す特性となる。この条件において、動作電圧が定電圧動作側に動いた場合、太陽電池モジュールの出力電流は、日影がないセルストリングと日影がかかったセルストリングの電流の総和がモジュールの出力となり、定格の 2 倍の Isc を出力することができる。したがって、バイパス回路にインターレース方式を採用したモジュールを利用する場合、システム全体の過電流設計において想定しない過電流が流れる恐れがあるため、過電流設計など電流に関する設計項目は、注意が必要である。ただし、インバータの電圧制御が、低電圧側へ動作しない場合、動作点が図 3.2.4-3 に示す高電圧領域となるため、過電流は発生しない。本項の内容は、安全強化に

関する事項のため「紹介」とした。

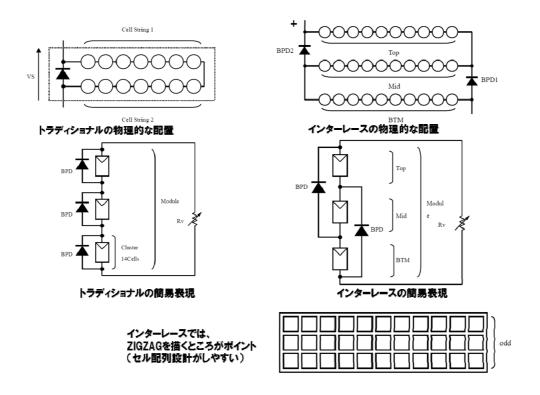


図 3.2.4-1 バイパス回路のインターレース概略図

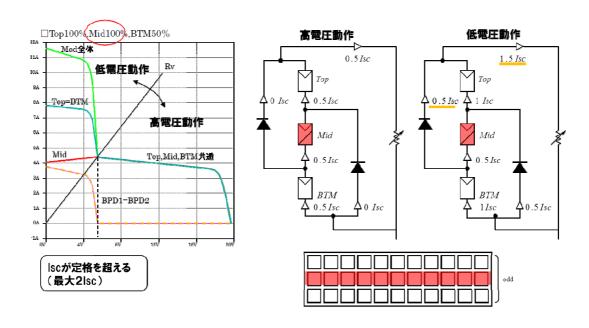


図 3.2.4-2 インターレース回路を持つモジュールにおいて, 2Isc が流れる例

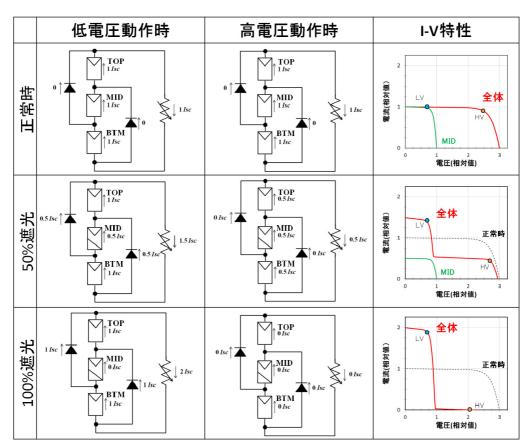


図 3.2.4-3 インターレース回路を持つモジュールにおける各遮光条件と動作点の関係

3.2.5 太陽電池モジュール (耐候性)

【目的】

屋外曝露されたことによって引き起こされる太陽電池モジュールの劣化によって事故が発生すること を防止する。

【選定指針】

該当なし。

【選定指針の解説】

該当なし。

【紹介事項】

- [1] 太陽光電池モジュール用の端子箱内部は、ポッティングした方が水分の影響による酸化・腐 食が少ないことが知られている。
- [2] 太陽電池モジュールのバックシートが高日射地域もしくはバックシートが紫外線にさらされる特殊環境下では、数年でヒビ、はがれることがある。

【紹介事項の解説】

[1] 太陽光電池モジュール用の端子箱内部をポッティングすることは、放熱回路の完成と酸化・腐食防止との二つの目的がある。放熱回路の完成について、ポッティングした場合、ポティング材料は、ポッティングしない場合の空気より熱伝導度が向上し、バイパス素子から熱放熱効果が高まる。また酸化・腐食防止について、ポッティングした場合、ポティング材料は、ポッティングしない場合の空気よりも酸素、水分浸透率を低減できるため、腐食につながる原因を抑制することができる。長期暴露後の調査のひとつにおいて、ポッティングしていないモジュールは、約45%のモジュールの端子箱内で腐食が確認された(参考文献1)。したがって、端子箱はポッティングした太陽電池モジュールは、ポッティングしないモジュールと比較すると、酸化、腐食によるバイパス回路内の故障の恐れを低減できる。なお、ポッティングしない太陽電池モジュールは、バイパス素子を接触式の電気的点検がしやすいこと、および取り外して交換ができる利点がある。しかしながら、バイパス素子の目視故障発見および素子交換は、太陽電池モジュール裏面にある端子箱にアクセスする必要があるため、容易ではない。

図 3.2.5-1 太陽電池モジュール端子箱内での腐食例

参考文献: Antonella Realini, MTBF - PVmMean Time Before Failure of Photovoltaic modules SUPSI, DACD, LEEE-TISO, Final report BBW 99. 0579, June 2003

[2] 太陽電池モジュールのバックシートが高日射地域、もしくはバックシートが紫外線にさらされる過酷な特殊環境下では、数年でヒビ、はがれることが報告されている。バックシートの劣化が進む場合、地絡事故を誘発する恐れがあるため、過酷環境下においては、モジュールの選定は十分に注意が必要である。

3.2.6 太陽電池モジュール (耐火性)

【目的】

太陽光発電装置以外の原因で火災が発生した時に、延焼し難い太陽電池モジュールを選択する。

【選定指針】

[1] JIS C 8992-2 に記載された火炎試験、火炎伝ぱおよび飛び火試験の要件事項を満足したもの、もしくはそれ以上の性能を持つ太陽電池モジュールを選定すること。

【選定指針の解説】

[1] JIS C8992-2 には、火災時の太陽電池モジュールの延焼性を評価する火炎試験、火炎伝ぱおよび飛び火試験が含まれている。何らかの原因で火災が発生した場合、太陽電池モジュールを媒体とした延焼を防止するため、火炎伝播試験の要件事項を満足したもの、もしくはそれ以上の性能を持つ太陽電池のモジュールを選定することが必要である。

【紹介事項】

[2] 米国では、屋根材とモジュールとの間に火種を入れて屋根材の燃焼ブランドが保てるかを確認する試験方法が規格化されている。

【紹介事項の解説】

[2] 近年米国において、屋根に太陽電池モジュールを設置した場合、屋根材単体の防火性能グレード(燃焼ブランド)を維持できない恐れがあるとの指摘があったため、2013 年に太陽電池モジュールを設置した屋根材の防火性能グレードを確認する試験方法が、UL1703 ANSI/UL 1703-2013 に追加された。 試験方法は、屋根材と太陽電池モジュールとの間に火種を入れて燃焼性を確認する方法である(参考文献: lammability Testing of Standard Roofing Products in the Presence of Stand-off Mounted PV Modules — Solar ABCs Interim Report (2010), Fire Classification Rating Testing of Stand-Off Mounted Photovoltaic Module and Systems (2013).)。

3.2.7 太陽電池モジュール (その他)

【目的】

太陽電池セルそのものの特性によって焼損が発生することを未然防止する。

【選定指針】

[1] 太陽電池セルの逆電圧耐性および消費電力耐性を考慮した太陽電池モジュールを選定することが望ましい。

【選定指針の解説】

[1] 太陽電池モジュール内の太陽電池セルにかかる致命的逆電圧による焼損を防止するためには、太陽電池セルの逆電圧耐性、消費電力限界特性、および太陽電池セル直列数とバイパス回路(クラスタ)の関係を適切に設計した太陽電池モジュールを選定する必要がある。

逆電圧特性を保護する観点では、クラスタを構成するセル直列枚数が少ない太陽電池モジュールを選定することが良い。消費電力限界特性を保護する観点では、太陽電池セルの逆電圧特性により2つに分類されているセルのタイプごとに、着目する点が異なる。JISC8990(10.9 ホットスポット耐久試験)で示すタイプ A セル(電圧制限型セル)の場合は、セルが部分影の状態が最大消費条件となり、部分的な消費電力密度が高まるため、消費電力限界特性に十分な配慮が必要である。他方、JISC8990(10.9 ホットスポット耐久試験)で示す電流制限型セル(タイプ B)の場合は、セルが完全に影になる状態が最大消費条件であり、消費電力はセル全体で消費するため、タイプ A と比較すると消費電力密度の影響が緩和される。

太陽電池モジュールは, 致命的逆電圧を防止するために, 太陽電池セルの逆電圧耐性(降伏限界電圧)がクラスタ電圧よりも大きく, かつ, 太陽電池セルの消費電力限界がクラスタ電力よりも大きくなるような回路構成とすることが良い。

このような太陽電池モジュールを選定することで,太陽電池モジュールのホットスポットヒーティングによる焼損の恐れを低減できる。

図 3.2.6-1 セルの I-V 特性の概念図

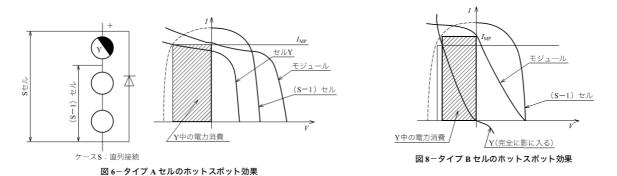


図 3.2.6-2 逆電圧象限特性:タイプ A とタイプ B セル (参考文献: JISC8990)

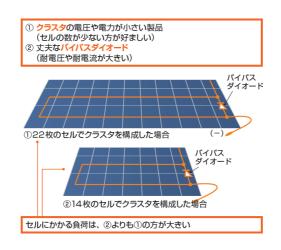


図 3.2.6-3 クラスタ設計の概念図

【紹介事項】

[2] 太陽電池セルの電極構成にスリッタードセルを用いた太陽電池モジュールは、故障が多いことが知られている。

【紹介事項の解説】

[2] 太陽電池セルは、フィンガー電極とバスバー、隣り合う太陽電池セルを配線するインターコネクタで構成される。太陽電池内部で発生する光電流は、フィンガー電極によりバスバーに集電され、インターコネクタにより隣り合う太陽電池セルへと通電される。スリッタードセルは、太陽電池セルのフィンガー電極が途中で途切れていて、フィンガー電極が1本のインターコネクタにのみ接続され、隣り合うインターコネクタと接触していない構造のことである(図 3.2.6-4 参照)。インターコネクタと太陽電池セルとの間に接触不良が発生した場合、電流は、接触不良が発生していない残りのインターコネクタに集中する。特にスリッタードセルは、隣り合うインターコネクタへは電流が流れないため、接触不良部分に流れる電流密度が高くなるため接触不良箇所の温度が数百度となる事例が報告されている。また、スリッタードセルの場合、部分故障から連鎖的に故障することが確認されている

参考文献:加藤和彦:「太陽光発電システムの不具合事例ファイル - PVRessQ!からの現地調査報告-」, 日刊工業新聞社, p.92 (2010).



図 3.2.6-4 スリッタードセルの例

3.2.8 太陽電池モジュール (規格)

【目的】

太陽電池セルそのものの特性によって焼損が発生することを未然防止する。

【選定指針】

[1] 第三者試験機関(IEC/JIS に準拠した認証機関)にて規格に準拠して認証を受けた太陽電池モジュールの性能以上を持つ機器を使用すること。

【選定指針の解説】

- [1] 太陽電池モジュールに関する IEC 規格や JIS の認証規格は、最低限の安全性能を示す規格である。そのため、安全確保の最低限の要件である。試験基準は、性能試験規格と安全性試験規格があり以下の試験規格が適用される。
 - ・結晶シリコン太陽電池(PV)モジュール JIS C 8990 (2009 年) (IEC61215 Ed.2 2005 年) (地上設置の結晶シリコン太陽電池(PV)モジュール-設計適格性確認及び形式認証のための要求事項)
 - ・薄膜太陽電池(PV)モジュールの JIS C 8991(2011 年) (IEC61646 Ed.2 2008 年) (Thin-film terrestrial photovoltaic (PV) modules Design qualification and type approval)
 - ・JISC 8992-1(2010 年)(IEC61730-1 Ed.1 2004 年)(太陽電池モジュールの安全適格性確認-第 1 部:構造に関する要求事項)
 - ・JIS C 8992-2(2010 年)(IEC61730-2 Ed.1 2004 年)(太陽電池モジュールの安全適格性確認-第 2 部: 試験に関する要求事項)

ただし、これら試験規格の要件事項を満たすことの意味は、20~25年といった長期耐久性を担保するものではなく、せいぜい5~10年の試用期間相当の発電性能を確認する程度である(参考文献1)。なお、2012年か開始した、固定価格買取制度では、10kW未満のPVSの設備認定基準には上記JET認証相当が必要要件であるが、10kW以上の認定基準にはそれは含まれていない(参考文献2)。(参考文献1)大林只志:「日本での太陽光発電システムの信頼性・安全性の取り組み」、太陽/風力エネルギー講演論文集2013、pp。275-280(2013)

(参考文献 2) 経済産業省資源エネルギー庁:「再生可能エネルギー固定価格買取制度ガイドブック」 (2013)

【紹介事項】

[2] 太陽光電池モジュール用の端子箱-安全要求事項及び試験(IEC 62790 Ed. 1.0)の要求事項を満足した太陽電池モジュールを選定すること。

【紹介事項の解説】

[2] 太陽電池モジュールの端子箱の安全性にかかわる規格として、IEC62790 が 2014 年に制定され

た。IEC62790 は、太陽電池モジュールの電気的安全性に関わる試験を数多く含んでおり、上記 JIS C 8990、8991、8992 とならんで今後広く活用されることが期待される。なお JIS 化への議論は、これからである。

- 1 General
- 2 Durability of marking
- 3 Fixing of lid on rewirable junction box
- 4 Protection against electric shock
- 5 Measurement of clearances and creepage distances
- 6 Dielectric strength
- 7 Resistance to corrosion
- 8 Mechanical strength at lower temperatures
- 9 Thermal cycle test (IEC 60068-2-14:2009, Test Nb)
- 10 Damp heat test
- 11 Weather resistance test
- 12 Flammability class
- 13 Ball pressure test
- 14 Glow wire test
- 15 Resistance against ageing
- 16 Wet leakage current test
- 17 Humidity-freeze-test
- 18 Bypass diode thermal test
- 19 Test of terminations and connection methods
- 20 Knock-out inlets (outlets) intended to be removed by mechanical impact.
- 21 Test of cord anchorage
- 22 Retention on the mounting surface
- 23 Reverse current test at junction box

3.3 パワーコンディショナ選定

【目的】

パワーコンディショナの最低限の安全性の確保と絶縁性を保持および接続部分の施工性, 安全性を高めるため。

【選定指針】

- [9] 電安全環境研究所(JET)の認証試験を受けたパワーコンディショナの性能以上を持つ機器 を選定すること。
- [10] 電気配線の施工性に優れたパワーコンディショナを選定すること。
- [11] 筐体内部の過熱防止機能を有しているパワーコンディショナを選定することが望ましい。
- [12] 接続箱と一体型のマルチストリング方式のパワーコンディショナの場合,回路ごとに直流を 遮断できる機能が備えられているパワーコンディショナを選定することが望ましい。
- [13] 外部からの電気配線を接続する端子台の温度が上昇した場合, 直流から交流への変換運転を 停止しやアラーム表示を行う等の保護機能を持つパワーコンディショナを選定することが望ま しい。
- [14] 主回路入力・出力端子部に圧着端子部を被う感電防止カバーがあることが望ましい。
- [15] 主回路入力・出力端子部に接続すべき外線の直流・交流・極性指示が見やすく表示してあることが望ましい。

【選定指針の解説】

- [1] 我が国では 20kW 未満のパワーコンディショナは、電気安全環境研究所(JET)の認証試験がある。この認証試験は、最低限の環境試験が含まれるため、パワーコンディショナの安全性を確認する最低要件として満足することが必要である。なお、現時点では 20kW 以上のパワーコンディショナは、同様な認証試験が決められていないため、それと同等もしくはそれ以上の試験の要件事項を満足する必要がある。なお、大型機については、産業技術総合研究所の福島再生可能エネルギー研究所において、試験設備構築が予定されている。
- [2] パワーコンディショナからの火災事例において、パワーコンディショナの入力部への直流電気配線部分(端子台部分)の極間短絡事故事例が報告されている。圧着端子の装備不良やネジ締めが不完全な状態であることなどが、事故要因として報告されている。そのため、施工時のエラーを防ぐことが事故防止に有効である。施工時のエラーを防ぐ対策方法は、施工管理、施工技術の向上と共に、施工性を配慮した製品の選定が重要である。施工性が配慮されていない製品は、取り付け時や配線時における施工エラーを招きやすく、施工エラーにより配線部分における直並列アーク事故に至る可能性がある。たとえば、製品に以下のような工夫が施されていると作業者の注意力への依存度が減り、施工確実性が向上する。
 - ①十分なガタースペースを設ける工夫(内線規程を参照すること) 十分なガタースペースがない場合,配線の曲率が過剰になることや施工性が確実に悪くなるため, 施工不良を誘発しやすい。
 - ②端子台に電気工事用の「鉄製亀の甲ネジ」を用いる工夫

小さく作られたガターやケーブル長が熱伸縮する状況で端子台の電気ネジに丸ネジが用いられると、化粧蓋を閉じるときに押圧されたケーブルの残留応力や運用時のケーブルの熱伸縮によってネジに左回転の力が加わりネジが緩んでしまうことが多い。このような「不意のネジ緩み」を防止するには、「ケーブルの揺動による圧着端子ネジ間の滑り」が起こりにくい鉄製亀の甲ネジを端子台に採用する工夫が有力である。このような構成は電気工事業界で既に実績がある。

③端子台に段違い端子を用いない工夫

段違い端子を用いた場合、作業時の見通しが悪くなり施工エラーを誘発しやすいため。

④配線口の位置を適切化する工夫

パワーコンディショナ本体の配線口が適切な位置に配置されることによって、施工エラーが減少することが知られている。室内用の壁掛型パワーコンディショナでは、天井裏を経由したケーブルが壁の中を通じてパワーコンディショナへと配線されることがほとんどである。またこのようなパワーコンディショナは、配線、背板、本体の順で施工される。これ以外の手順では背板が邪魔になり施工しにくいからである。そのような背景がありながらもパワーコンディショナの配線口が筺体の下部に設けられている場合、天井裏からパワーコンディショナに至る配線は背板固定ネジによって貫通されやすい(図 3.3-1)。この場合、パワーラインが背板電位である接地電位に地絡することとなる。施工時の配線損傷とその結果として生じる地絡を防止するためには、背板固定ネジが配線を貫通することが無いように、配線口を管体の上部に設けると良い。他方、屋外用のパワーコンディショナでは、配線を通じて雨水が筐体内に侵入することを防止するため、配線口を管体下部に設けると良い場合が多い。

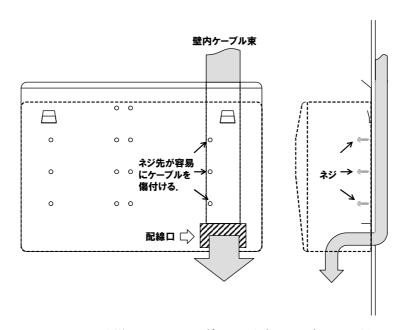


図 3.3-1 壁掛け PCS の配線口と壁内ケーブルの関係

[3] パワーコンディショナの内部の温度上昇が起きた場合,温度が上昇し続けるケースが確認されており、火災発生や周辺環境への影響を防ぐために、筐体内部の温度上昇時には、出力を下げることや停止することで加熱防止機能を持つことが事故拡大防止に望ましい。

パワーコンディショナは、直流を交流に変換する機能を有し、出来るだけこの変換効率を高めて

多くの発電電力量を得ることを目指して設計されている。ここで、交流出力電力/直流入力電力の 比率を電力変換部の変換効率と定義する。電力変換部の変換効率が設計値、運転開始初期と比べて あらかじめ定められた数値以下に劣化することは、何らかの予期しない電気発熱がパワーコンディ ショナ内部で起きて損失が増えていることと直接に結びつく。電力変換部の変換効率計測すること により内部異常を間接的に検知する機能を持つ製品が存在する。例えば、機内の予め設計された場 所において運転中に連続計測し、設計範囲または過去の実態範囲を逸脱することを制御保護部で検 出し、アラームを表示すること。また、運転停止、運転電力低減、または遠隔監視を行う集中サー バーにアラーム送出して運転継続させる機能などを持つ。

- [4] 接続箱と一体型のパワーコンディショナには、電技解釈第149条に定める直流遮断器を入れる 必要がある。詳細は、「接続箱および筐体」を参照のこと。
- [5] メーカーが把握しているパワーコンディショナの故障事象の中で、施工時の外線端子部ねじの締め付け不足による電流密度の増加に伴い端子部が加熱、焼損、さらには発煙に至る事例が多く報告されている。交流出力、直流入力ともに、外線端子部に熱電対による温度検出機能を持たせ、制御基板に熱電対温度検出のアナログ信号を入力して端子部温度高を検出できるようにし、温度高検出時にパワーコンディショナの運転を停止する設計が行われている製品がある。施工時の配線増し締め不足、不適切な配線取り付け、圧着端子への圧着不足を含めて、温度高に至った段階でパワーコンディショナの入出力電流をゼロにすることにより、それ以上の温度上昇を防ぎ、施工者がアラーム内容を確認、手直しを行う余地を残すことが推奨される。
- [6] 交流・直流の主回路外線を接続する端子部は、ケーブルを接続した後に上からこれを被う感電防止カバーをはめる構造となっていることが望ましい。感電防止カバーは、ほこり、虫、作業時の万が一のドライバー・ケーブル導電部接触による短絡を防ぐことができる。
- [7] 直流の正・負極性の接続間違い,直流端子への交流配線誤接続,交流端子への直流配線誤接続はいずれも導電開始の瞬間にパワーコンディショナを故障させる。直流の極性を間違えると直流電解コンデンサが破損する。直流回路に交流電源を接続することも危険である。これらの接続・電力注入が行われてもパワーコンディショナ筐体外部に炎,火花が出さないことが必要である。設置工事の時には筐体のふたを閉める前に直流印加を行うことがあるので間違えないようにマニュアルと機内の表示で注意を喚起する。各端子に接続すべき交流・直流の区別と極性の指示を表示するなどして,施工の間違いを減らす愛が必要である。

【紹介事項】

- [8] 太陽電池モジュールのバイパス回路が故障した場合、最大出力動作点追従 (MPPT: Maximum Power Point Tracking) の最低動作電圧が過度に短絡側に移動しないパワーコンディショナは、太陽電池モジュールの焼損の恐れを低減することが知られている。
- [9] 内部回路の短絡故障時の対策が施されているパワーコンディショナは、安全性が高いことが示されている。
- [10] 海外において、消防隊員保護を目的としたラピッドシャットダウンと連携できるパワーコンディショナがある。
- [11] 海外において、消防隊員、メンテナンス技術者などパワーコンディショナの主回路ないし筐体内部に接触し得る人の感電からの保護を目的とし、直流入力コンデンサの残留電圧が 10 秒以内に 30V 以下に低減可能な放電抵抗回路を持つパワーコンディショナがある。
- [12] パワーコンディショナ内部に強制的に発火を起こした場合でも、エネルギーの注入が止まれば自己消火すること、外部に炎を出さないことの確認を実施したパワーコンディショナが製造されている。
- [13] 制御基板,主回路基板は鉛直方向に配置し,昆虫の糞尿が基板パターンにまたがって付着しにくい構造にすることが一般的である。
- [14] 制御・主回路基板にコーティングを施してほこりの付着による、橋絡や絶縁抵抗低下を抑止 するためのコーティングが施されている製品もある。
- [15] 筐体が完全密閉であり、外部との空気の流通を遮断し、かつ冷却ファンを無くした製品がある。
- [16] 海外において、太陽電池モジュール単位で無電圧化できる製品がある。
- [17] パワーコンディショナに設置されているサージアレスター素子の劣化診断が可能であることは、サージアレスタ素子の故障による危険の恐れを低減することが知られている。
- [18] 保安点検の際に、直流部分の再配線等が不要な方法により I V 測定など電流を通じた測定を 行うことが可能なパワーコンディショナがある。

【紹介事項 解説】

[8] 太陽電池モジュールのバイパス回路が開放故障している1次故障がある状況において、パワーコンディショナの動作電圧が短絡側に移動すると、図に示す通り当該クラスタのセルストリングに逆電圧が印加され、相対的に光電流(Iph)の低いセルが逆電圧象限動作となり危険な状態となり、セル焼損の2次故障を発生させる可能性がある。しかし、パワーコンディショナの動作電圧範囲の最低値を制限することにより上記の状況を回避することが可能である。ただし、実際の太陽電池アレイの発電中の動作点は、個々の太陽光発電設備の構成や設置条件、温度などの気象条件に強く依存するので、具体的なパワーコンディショナの安全な動作電圧範囲を把握するためには、太陽電池アレイの実態に即した電流・電圧カーブの合成シミュレーションなどを実施する必要がある。

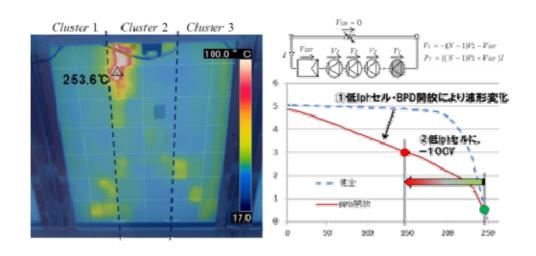


図 3.3-2 動作点と部分的逆電圧の説明図

- [9] 太陽電池モジュールのバイパス回路が開放状態で故障している状況で、パワーコンディショナの内部回路(例えばインテリジェントパワーモジュール(Intelligent Power Module, IPM)が短絡モードで故障した場合には、前述の[4]に示した、図 X において太陽電池アレイ全体からみた動作点は短絡電流点となる。その条件では、バイパス回路が故障したモジュール(クラスタ)にはシステム電圧に近い逆電圧が発生し、太陽電池モジュール内で直列に配線されたセルの部分的焼損する場合がある。
- [10] 例えば、米国 EATON 社。ただし、現在国内における製品はない。2.6.4 ラピッドシャットダウンを参照。
- [11] 2.6.4 ラピッドシャットダウンを参照。
- [12]パワーコンディショナ自体の偶発的故障の一つとして、電力変換素子として使う MOS-FET, IGBT, SiC その他のトランジスターの偶発故障がある。トランジスターは製造・出荷時に特性確 認を行い、良品と判断したものをパワーコンディショナに取り付けて使う。しかしまれにではある が、使用開始後ある期間が経過した後に突然、本来同時に導通するべきでない素子同士が同時に導 通し、交流短絡経路を形成して瞬時にトランジスターに流れる電流が上昇し、過電流が継続するこ とによりトランジスターが破裂する事象がある。本来、トランジスターを制御するゲート回路は、 交流短絡を起こしうる同時通電を行わないようにゲートパルスの隙間時間を十分確保し、またイン ターロックをとるなどしてこのような動作は起こりえない設計であるが、それでもごくまれにトラ ンジスターの破裂が起こっている。事故の解析では解明できていない事象であり、トランジスター の自爆、または宇宙線の影響などが考えられているが結論が出ていない。パワーコンディショナ内 部で万が一このようなトランジスターの破裂が発生しても、一定量の発煙は防げないとしても火炎 と火花が管体外部に出て周囲に引火するおそれが無いように、強制内部短絡試験または着火した木 片を入れて筐体を閉じる試験などを実施している。メーカーがこの試験の詳細手法と結果を公表す ることは義務づけられていないが、今後、新しいトランジスター素子の採用や粗悪なトランジスタ 一の混入が避けられずに市場に出回った場合を最悪想定して、住宅あるいは周辺部材への着火をし ない試験の義務化と結果提示が求められることが望ましい。電解コンデンサのパッキン劣化による 電解液漏出、サージアブソーバーの破裂などに対してもこのような試験を行えば火災防止だけは実

現できる。

- [13] ゴキブリなどの昆虫がパワーコンディショナ内部に侵入しないように網などによって開口部を防護しているが、ゴキブリは生まれたばかりの幼虫の体長が2mm程度以下であり、筐体がパッキンなどによる完全密閉でない限り、侵入を防げない。これは他の家電品でも同様である。機内に入った幼虫は機内の油を食べて成長し、糞尿を基板上に落とすと基板のパターンの間で乾燥、炭化をくり返しやがて細い導通経路を作る。このようなトラッキング現象を防ぐように基板のパターン間の間隙を一定以上とするようにJET認証試験で基板パターンの確認を行うが、一番の対策は、基板を鉛直方向に配置し、糞尿を基板上に付着しにくくすること、及び雨水、台所、脱衣所設置による水道の誤操作による外部からの水の浸入に対しても基板が鉛直方向に付けられていることが水たまりを作らず、短期の短絡経路の形成を防ぐ効果がある。このような知見は家電メーカー、強電メーカーともに常識であるが、逆にこれを知らないメーカーがあるとすると指導が必要である。
- [14] 制御基板および近年では主回路基板を使って、配線の手間を省略し、製造費用の低減と品質の向上をねらった製品がある。基板のプリント配線部及び主要部品に樹脂のコーティングをかけることによりほこりの付着、吸湿による不要な電流経路の生成、発熱を防ぐことが出来る。
- [15] 近年のパワーコンディショナ技術の進歩に伴い、電力変換効率が96%以上に向上し、内部の損失による発熱が減って来た。これによって、筐体を熱伝導性の高いアルミニウム製などとし、パッキンと締め付けねじを使って完全に内部と外部を密閉構造にしたファンレス製品が出てきた。万が一内部での発火が起きても酸欠状態となって消火する。ただし、端子部は外気と流通しているので端子部の取り付け作業ミスによる発熱は起こりうる。
- [16] 太陽電池モジュール単位で無電圧化できる製品のひとつに、太陽電池モジュール単位にインバータを接続する製品(マイクロインバータや AC モジュールとも呼ぶ; AC は交流の意味)がある。これは太陽電池モジュールの裏面に 300W程度以下のパワーコンディショナまたはインバータを取り付け、交流 200/100V、交流 100 Vなどの交流を直接出力し、複数の交流出力を並列接続して低圧配電系統に連系する。この構成では、従来の太陽電池モジュールの直流出力電力をケーブルで配線し、接続箱で集電し、パワーコンディショナに接続するまでの外部の直流回路が存在せず、電流を交流電流のゼロ点で停止できるので直流アークが発生する部分が存在しない。太陽電池モジュールの直流出力とマイクロインバータに接続する最小の配線部分が直流電路なので、この部分の防護が重要である。
- [17] パワーコンディショナ内部の主回路・制御回路に、外部から侵入する電圧サージを吸収して機器の故障を防ぐためのサージアレスター、サージアブソーバーが付いている。これらの素子は実際に外部からサージ電圧が侵入した時に自身のインピーダンスを減らして電流を分流させ、エネルギーを吸収する。このような保護動作を数回行うと、サージアブソーバーは動作責務の吸収エネルギー(J)に到達し、断線故障となる。断線状態で最終状態となるので、パワーコンディショナの動作は通常通りであり、次に高電圧サージが侵入した時に内部の部品に高電圧サージが直接印加され、部品が故障する可能性が高まる。定期点検において、サージアレスター、サージアブソーバーの故障を検出するための試験方法、表示機能があると好ましいが未だに明快な解決方法は無い。サージアブソーバーに高電圧サージが侵入した時に、ターゲットと言って、棒状の表示装置が飛び出す機能を持つ部品は製品化されている。
- [18] 保守点検の際には、開放電圧に代表される電圧測定に加えて、IVカーブ特性の測定を行うため、

電流を流す測定が必要な場合がある。電流を流す測定は、配線部分を一度外して測定器に接続し直す方法、既存の端子に測定端子を挟み込む方法、直接接触させて測定する方法がある。しかしながら、電気安全を考えた場合、各方法を行うことは、接続の脱着時における活線作業の事故、再施工による端子のゆるみによる火災発生、極間短絡、作業者の感電事故の恐れを高める。

その危険を低減する方法の一つとして、既存の配線への影響なく、IV カーブ測定等の電流を流すことが可能な測定用にプロービング端子をあらかじめ具備する方法は、作業者の感電保護に役立ちまた再配線の作業も不要となる。なお、パワーコンディショナより太陽電池側に遮断器を含む接続箱が設置されている太陽光発電設備の場合、接続箱における電気的遮断は、作業者の感電危険の恐れを低減できる。ただし、再び配線する時の感電事故の恐れはある。なお、接続箱は、点検作業時にアクセスが容易な場所に設置されていることが必要である。IV カーブの測定点は、接続箱がある場合、パワーコンディショナと接続箱が一体構造の場合、および接続箱とパワーコンディショナの両方に遮断器がある場合等、直流回路の電気設計と関連するため、「接続箱および筐体」もあわせて参照されたい。

また、特別な配線等を不要とした I Vカーブ特性測定方法としては、パワーコンディショナがアレイ電圧を走査することにより測定する方法もある。

図 3.3-3 断路器に付属したプロービング端子例

3.4 接続箱(筐体および遮断器を含む)選定

【目的】

接続箱における短絡事故などを防止すること、および事故が発生した場合の拡大損害、特に他の電気設備、建物への延焼を防止するため。

【選定指針】

- [29] 直流 750V 以下のシステムにおいては、JEM 1493「太陽光発電システム用接続箱及び集電箱」の要件項目を満足する、もしくはそれ以上の性能を持つ接続箱を選定することが望ましい。
- [30] 施工性に配慮した接続箱を選定することが望ましい。
- [31] 電カラインにプリント基板配線を利用する場合、必要なトラッキング性能を満足したプリント基板を用いた接続箱を選定することが望ましい。
- [32] 接続箱内の配線用電線には耐熱電線を利用することが望ましい。
- [33] 短絡電流相当の電流が通電した状態において、電路を開放可能な直流開閉器を備えた接続箱 を選定すること(断路器は使用しないこと)が望ましい。ただし、過電流保護と関連する場合、 「絶縁・地絡保護・過電流保護の基本原則」を参照すること。
- [34] 火災時の延焼防止と認められる措置を施した筐体を用いた接続箱を選定すること。
- [35] 接続箱内に設置する過電流防止素子や避雷素子は保守点検が可能な部位に設置し、その仕様が視認できるように設置することが望ましい。視認が困難な場合は、回路図や点検手順を付与する等、保守点検時に過電流防止素子や避雷素子の焼損等が容易に発見できるようにすること。

【選定指針 解説】

接続箱の設計は、接続部における短絡事故等を防止することが最重要であり、また事故発生時の拡大損害を防止することが必要である。

- [1] 国内の業界規格として、JEM 1493「太陽光発電システム用接続箱及び集電箱」がある。直流 750V 以下のシステムにおいては、本規格の要件項目を満足した接続箱を推奨する。JEM 1493 は、接続箱 及び集電箱において、少なからず焼損などの事故事例が報告されてきたが、接続箱及び集電箱としての規格が存在していなかったことから、最低限の仕様として 2011 年に制定された。また、2012年に、適用範囲を"最大電圧が直流 600 V 以下の太陽電池アレイに使用するもの"として改正が行われた。また、IEC は IEC61439-1、IEC61439-2 があるため、参考にすると良い。
- [2] 接続箱における火災事例において、接続箱の直流電気配線部分(端子台部分)での極間短絡事故事例が報告されている。その要因として、圧着端子の装備不良やネジ締めが不完全な状態であることなどが報告されている。そのため、施工時のエラーを防ぐことが安全性向上に有効である。対策方法として、施工管理、施工技術の向上と同時に、装置側での施工性を配慮した製品の選定が重要である。施工性が配慮されていない製品は取り付け時や配線時における施工エラーを招きやすく、配線部分における直並列アーク事故に至る可能性があり、施工性を高めることが安全性の向上に寄与することから「推奨」とした。たとえば、製品に以下のような工夫が施されていると作業者の注意力依存度が減り、施工確実性が向上する。

①十分なガタースペースを設ける工夫(内線規程を参照すること)

十分なガタースペースがない場合,配線の曲率が過剰になることや施工性が確実に悪くなるため,施工不良を誘発しやすい。JEM 1493(2013)では「8.12 ガタースペースは,指定する外部電線が通常の寿命を縮めることなく接続できるスペースを,保有しなければならない。」としている。

②端子台に電気工事用の「鉄製亀の甲ネジ」を用いる工夫

小さく作られたガターやケーブル長が熱伸縮する状況で端子台の電気ネジに丸ネジが用いられると、化粧蓋を閉じるときに押圧されたケーブルの残留応力や運用時のケーブルの熱伸縮によってネジに左回転の力が加わりネジが緩んでしまうことが多い。このような「不意のネジ緩み」を防止するには、「ケーブルの揺動による圧着端子ネジ間の滑り」が起こりにくい鉄製亀の甲ネジを端子台に採用する工夫が有力である。このような構成は電気工事業界で既に実績がある。

③端子台に段違い端子を用いないこと

段違い端子を用いた場合、作業時の見通しが悪くなり施工エラーを誘発しやすいため。

- [3] プリント基板配線はトラッキング火災に至りやすい。我が国だけでなく欧州でもトラッキング時に酸素が流入し爆燃した事例がある。また、接続箱内は PVC 外装の耐熱温度である 60℃を超過する場合があり、ブロッキングダイオード端子付近の溶融例が多い。このようなことから、当委員会では接続箱内の電力配線にはワイヤ配線を推奨としている。しかしながら、ワイヤ配線のみとした場合に、銅バーによる配線方式が除外されるため、プリント基板配線を利用しないこととした。ただし、計測装置などの低電圧回路でのプリント基板配線はこの限りではない。本項に関連した配慮すべき事項として端子カバーやマーカーの耐熱温度がある。
- [4] 接続箱内配線に PVC(塩化ビニル)シースの IV 線(60℃)が用いられている場合がある。しかし、このような電線はダイオードの熱により軟化していることが多く、外枠等のケースに接触している箇所では感電やアークの危険性がある。内部温度が上がりやすい箇所、特にダイオード付近には、エコケーブル、MLFC、MKIV など 105℃を超える耐熱性のある電線・ケーブルの利用を「推奨」する。JEM 1493 では、接続箱内の主回路導体に絶縁電線を使用する場合の主な種類及び最小太さを表 3.4-1 および表 3.4-2 に示している。また、JEM 1493 の解説には以下の記述がある。

電線の種類及びサイズは、周囲温度 30 ℃を想定し、電気事業法における電気設備の技術基準の解釈(以下、電技解釈とする。)146 条を満たすもののうち、各製造業者が使用しているものを参照した。なお、熱に対する要求性能が高く、接続箱及び集電箱に使用されるケースが多い、表 3 に規定する以外の電線についても、解説表 1 に記載した。解説表 1 に記述した電線記号については、一般社団法人日本電線工業会が制定する記号に準じた。EM-IC/F は 600 V 耐燃性架橋ポリエチレン絶縁電線(JCS 3417)、EM-MLFC/F は、耐燃性ノンハロゲン架橋ポリエチレン絶縁電線を示している。また、UL 電線及び相当品については、電線の製造業者が記載する耐熱性能及び許容電流性能が EM-MLFC/F と同等のものを指し、耐熱性能が高いものについての使用範囲を広げた。これらの電線は、各規格の適用範囲によれば交流 600 V に適用可能とされていることがほとんどであるため、直流 750 V に用いる場合には、電技解釈 5 条を満足しているものかどうか、受渡当事者間で確認する必要がある。また、例外として、電技解釈 46 条の" ただし書き"の要求に合致した製品であれば直流 1500 V まで使用可能となる。

表3.4-1 絶縁電線の最小太さ

電流値	絶縁電線の最小太さ		
A	単線の呼び径	より線の	の公称断面積
			mm ²
	mm	IV及びKIV	HIV及びEM-IE/F
15以下	2	2	1.25
20		3.5	2
30	2.6	5.5	3.5
40	3.2	8	5.5
50 60		14	8
75		22	14
100		38	22
125	_	60	38
150	_		
175 200	_	100	60
225	_		100
250	_	150	
300	_		
350	_	200	150
400		250	
500	_	325	250
500		150×2	250

表3.4-2 絶縁電線の最小太さ

電流値	EM-IC/F	UL1015
	EM-MLFC/F	UL1283
A	又は相当品	UL1284
15以下	1.25	AWG16
20	2	AWG14
30	3.5	AWG12
40	5.5	AWG10
50 60	8	AWG8
75	14	AWG6
100 125	22	AWG4
150	38	AWG2
175 200 225	60	AWG1
250	100	AWG1/0
300	_	AWG2/0
350	150	AWG3/0
400	_	AWG4/0
500	200	_

[5] 接続箱の事故例として、直流回路の開閉器に交流用遮断器を誤って利用してしまい、直流の回路を遮断できずアークが発生し、機器焼損の事例は報告されている。火災事故に繋がる可能性があり危

険である。したがって、直流回路では、交流遮断器ではなく直流負荷開閉器を備えることが必要である。直流回路ではアークの継続を防ぐのに十分な接点と極数から成る開閉器を選定する必要がある。たとえば 500V システムに対し一極あたり 200V の耐電圧を持つ接点を採用する場合、三極にてアークを遮断することになる。その場合の構成を図 3.4-2 に示す。特に接続箱においては、出力側の遮断器にて電路を開放することで、分岐回路にヒューズを使用している場合でも安全が確保できる。

ここで、遮断機、開閉器、断路器がある。断路器は、通電状態での断路作業により焼損事例が多いため、安全性の観点からは推奨できない。また、ヒューズも遮断器の位置づけとなる。なお本項は、通常運転時の電路開放を目的としているため、短絡電流相当を開放するための機器を記載している。そのため、各種事故様相を考慮した、過電流(逆電流)保護に関しては、「2.3 絶縁・地絡保護・過電流保護の基本原則」を参照にすること。

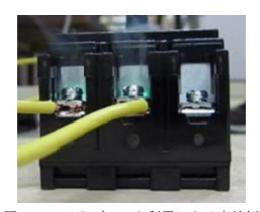


図 3.4-1 AC ブレーカ利用による事故例

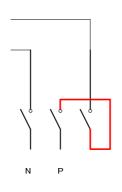


図 3.4-2 3 点切りの回路及びブレーカの配線例

[6] 接続箱の火災事故に関し、これまでに判明している延焼事故事例はすべて樹脂製であり、金属製での延焼事故事例はない。また、金属製接続箱内での出火時に延焼を防止した事例の報告がある(参考文献 1~6)。これまでの事例から、接続箱の筺体については基本的には金属製を用いることが安全の確保に役立つ。しかしながら、樹脂製の接続箱は、樹脂の種類や対策方法により燃焼性が異なる。そのため、必ずしも金属製接続箱以外を排除するものではない。金属製接続箱以外を利用する場合、延焼の危険を低減するために、接続箱は延焼防止と認められる措置を施す必要がある。延焼防止と認められる措置としては以下のような例がある。

- ①接続箱から他の可燃物への延焼がない十分な距離を確保すること。
- ②木造建築の内外装材への延焼がない十分な距離を確保すること。
- ③接続箱内の火元を速やかに除去できる対策を行っていること。
- ④接続箱内側に不燃材を利用していること。
- ⑤さまざまな事故を想定して、接続箱の延焼が発生しないことを事前に確認した試験を満足して いること。

IEC 60695-2-10 におけるグローワイヤ試験は、接触時間は少なくとも 60 秒としているため、火元の除去時間は 60 秒以内が望ましい。しかしながら、現在、延焼が起こらないことを明確に確認する試験方法は存在しないため、接続箱に不燃材以外を選定する場合、延焼防止措置について、発注者は、燃焼性などの安全特性の仕様を確認することを推奨する。樹脂製を利用した対策の一例として、筐体自体に 5VA の難燃性を持たせる以外に、内部にも延焼防止策を設ける方法がある。この方法による延焼防止実績として、接続部の不具合と思われる箇所が発熱および PF 管から進入した水によるショートが原因により接続箱内部の部品が焼損した際、筐体外部への延焼防止が出来た事例がある。対策は、接続箱の筐体のみでなく、事故点になることが多い、端子台や遮断器の材料も考慮して行うことが必要である。

また、住宅用と産業用では、ストリング数が大きく異なるため、事故の危険も異なる。特に 450V 以上のシステムの接続箱では注意が必要である。今後は、材料による規定ではなく、燃焼性試験を制定するなど試験方法の策定による対応も必要である。

金属製以外の材料として,不燃性材料には平成12年5月30日建設省告示 第1400号さらに, 平成16年9月29日国土交通省告示第1178号にて以下のように示されている。

1.コンクリート 2. れんが 3. 瓦

4. 陶磁器質タイル 5. 繊維強化セメント板

6.厚さが3mm 以上のガラス繊維混入セメント板

7.厚さが5mm 以上の繊維混入ケイ酸カルシウム板

8.鉄鋼 9. アルミニウム 10. 金属板

11.ガラス 12. モルタル 13. しっくい 14. 石

15.厚さが12mm 以上の石膏ボード (ボード用原紙の厚さが0.6mm 以下のものに限る)

16.ロックウール 17. グラスウール

不燃材料の指定方法であった昭和 45 年建設省告示第 1828 号は廃止され、国土交通大臣の認定を受けるための不燃性能は、国土交通大臣に指定された指定性能評価機関による不燃性能試験に規定され、次の(1)又は(2)のいずれかを満足した場合、不燃材料と認められている。不燃材で示す上記材料を利用した現実の製品開発との関係から今後継続して筐体の材料については議論が必要である。

(1) 不燃性試験又は発熱性試験のいずれかに合格し、かつガス有毒性試験に合格したもの。

(2) 不燃性試験又は発熱性試験のいずれかに合格し、かつ不燃材料の基材に化粧を施したもので、

その化粧層の有機化合物の合計質量が 200 g/m2 以下のもの,及び予め基材の表面に木質系の材料等が施されている場合の化粧層の有機質は,表面に木質系部分を加味した総有機質の合計質量が 400 g/m2 以下のもの。

なお、接続箱は、延焼以外のリスクとして、塩害、感電を防止する二重絶縁の観点についても考慮して設計する必要がある。低圧盤類に対する国際規格である IEC61439-1 は、「故障保護」(1つの絶縁不良が発生した場合に対する感電防止の手段)として、①二重絶縁 ②零相電流監視による入力遮断の何れかを求めている(8.4.3.1)。(主回路が大地から絶縁されている場合(IT系)はこの限りではない。)しかし、IEC規格は任意規程であり、国内法令ではこの様な制約は無い。金属筐体への接触による感電を防止する手段として、電技解釈は以下のとおり保護接地を認めている(電技解釈29条)。すなわち、通常の低圧機器の金属筐体には、電圧が300V以下ではD種接地(接地抵抗1000以下)が、電圧300V超では(C種接地抵抗は100以下)が求められている。同条第4のとおり、非接地かつ小規模(10kW以下)の太陽光発電の直流電路に施設する筐体に関しては、電圧450Vまで1000以下の接地により感電保護を行うことが認められている。ただし、故障によって充電部と化した筐体の対地電位が、これらの保護接地によって安全な電圧になるためには、電路の他の箇所はこれら接地抵抗よりも十分に高い抵抗で大地から絶縁されている必要がある。

「電技解釈「【機械器具の金属製外箱等の接地】(省令第10条,第11条)

第29条電路に施設する機械器具の金属製の台及び外箱(以下この条において「金属製外箱等」という。)(外箱のない変圧器又は計器用変成器にあっては、鉄心)には、使用電圧の区分に応じ、29-1表に規定する接地工事を施すこと。ただし、外箱を充電して使用する機械器具に人が触れるおそれがないようにさくなどを設けて施設する場合又は絶縁台を設けて施設する場合は、この限りでない。

29-1表

機械器具の使用電圧の区分		接地工事
低圧 300V以下 300V超過		D種接地工事
		C種接地工事
高圧又は	特別高圧	A種接地工事

. . .

4 太陽電池モジュールに接続する直流電路に施設する機械器具であって, 使用電圧が 300V を超え 450V 以下の ものの金属製外箱等に施す C 種接地工事の接地抵抗値は,次の各号に適合する場合は,第 17 条弟 3 項第一号の規定 によらず,100 Ω 以下とすることができる。

- 一 直流電路は、非接地であること。
- 二 直流電路に接続する逆変換装置の交流側に、絶縁変圧器を施設すること。
- 三 太陽電池モジュールの合計出力は、10kW 以下であること。

四 直流電路に機械器具(太陽電池モジュール,第200条第2項第一号ロ及びハに規定する器具,逆変換装置及び 避雷器を除く。)を施設しないこと。」 参考文献 1: 都筑, 東日本大震災における P V 被災実態調査 (中間) 報告 NPO 法人太陽光発電所ネ

ットワーク 東日本大震災被災太陽光発電実態調査報告会,2011/7/30

参考文献 2: 消防研究センター,田村氏発表資料,太陽エネルギー学会セミナー

参考文献3:吉富氏資料,太陽エネルギー学会セミナー

参考文献 4:加藤,"産総研メガ・ソーラタウン-10年の運用実績の概要,太陽/風力エネルギー

講演論文集 (2014)

参考文献 5: Haeberlin 資料

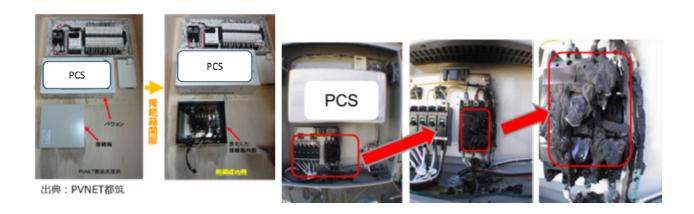
参考文献 6:鈴木、太陽光発電システムの火災・事故事例、講演討論会「太陽光発電システムと火

災安全」, 日本火災学会, 2014」

(左) 端子台トラッキング (参考文献: Haeberlin)

(中) 基板トラッキング、酸素流入を契機とする爆燃(参考文献: Haeberlin,)

(右) 端子台トラッキング (参考文献:吉富電気)


参考文献: Haeberlin, Arc Detector for Remote Detection of Dangerous Arcs on the DC Side of PV Plants, International workshop "Arcing in Photovoltaic DC-Arrays - Potential Dangers and Possible Solutions" 図 3.4-3 接続箱における事故例

出典: VDE

図 3.4-4 樹脂製における事故拡大例

参考文献: VDE, Arcing potential in fuses: missing standards for adequate testing of fuses in PV application, International workshop " Arcing in Photovoltaic DC-Arrays - Potential Dangers and Possible Solutions"

参考文献: PVNET 都筑 (左図)、産総研 (右図) 図 3.4-5 金属製における事故拡大防止例

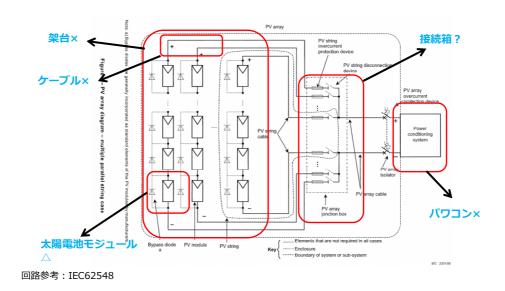


図 3.4-6 2 重絶縁との関係

[7] 過電流防止素子や避雷素子は保守点検が可能な部位に設置していないことが多く、保守点検時にダイオードの通電試験や目視点検が難しい場合がある。そのため、設置場所は故障等が判別できる場所にあることが良いため推奨とした。また、避雷素子など点検時に仕様の確認をして絶縁抵抗や IV カーブ測定などを行う必要があるが、電気的仕様がわからないことが多い。そのため、その仕様が視認できるように設置することが必要である。

【紹介事項】

- [6] 米国では、接続箱あたりのストリング接続本数に上限がある。
- [7] 接続箱に利用するフェルールの選定には、ケーブルとの組み合わせがある。

【紹介事項 解説】

- [8] 米国では、接続箱あたりの ストリング接続回路数に上限がある。NEC 2014 690.13(D)によれば、同一盤内のディスコンの数は6以下でなければならない。
- [9] 接続箱に利用するフェルールには、ケーブル径および端子台側挿線部との最適な組み合わせがあるため、その選定には注意を要する。フェルールがケーブル径よりも細い場合には束線が不十分となり、ネジがフェルールを適切には押圧しないことがある。フェルールがケーブル径よりも太い場合には挿線が不充分になりやすい。これらは、直流アークの発生の要因となる。

3.5 ケーブル設備および配線設備の選定

3.5.1 コネクタの選定

【目的】

コネクタにおける直列アークを回避するため。

【選定指針】

- [13] 製造メーカが異なる嵌合可能なコネクタは、機器公差など相互の製造メーカにて安全性が確認取れたコネクタを選定すること。
- [14] IEC62852 の要求事項を満足したコネクタを選択することが望ましい。

【選定指針 解説】

- [8] コネクタは、太陽電池モジュール間やストリング等をつなぎ合わせる重要な接続部分であり、接続不良がある場合、直列アークが発生する危険がある。そこで、コネクタには接続不良が発生しない機器を選定する必要がある。コネクタには、形状が類似で機械的に互換なものであり嵌合可能な機器が存在する。しかしながら、勘合ができるだけでは各社のコンタクト部の設計が同一とは限らない。装置内部のスプリング部の公差などが異なる場合、コネクタの電気的仕様(電圧・電流)の許容度が同一であっても、接続不良が発生する恐れがある。
- [9] IEC 62852 Ed. 1.0:2014 (b) 「Connectors for DC-application in photovoltaic systems Safety requirements and tests: 太陽光発電システムの直流印加用コネクター安全要求事項及び試験コネクタに関する安全性規格」が 2014 に発行された。基本はこの規格の要求事項を満足することを推奨するが JISC 化など国内の議論が十分でない。

【紹介事項】

- [15] コネクタには、ロック式コネクタとラッチング式コネクタがある。
- [16] ロットが同じコネクタを利用することは、安全確保に役に立つ。。
- [17] ハウジングに極性キーを備えている(キーイング)コネクタを利用することは、安全確保に 役に立つ場合がある。

【紹介事項 解説】

[10] ロック式コネクタとは、ロック機構を備えたコネクタであり主に硬質の樹脂を外部絶縁体として用いている。その構造は、大別して2種類あり、オスコネクタとメスコネクタを勘合した状態から開放する為に特殊な工具が必要なもの(米国 NEC 仕様)と、手でロックを外せるタイプがある。アジアや欧州では、後者の方が多く使用されている。

ラッチング式コネクタは,主にエラストマーを外部絶縁体として用いており、オスメスコネクタの 勘合部に凹凸を設け,その掛りによって防水性と勘合保持力を有する構造となっている。

近年,ロック式コネクタにおいて,コネクタ勘合部での異常発熱や絶縁不良による地絡事故の例が あり,粗悪なコネクタも存在するので注意が必要である。

前記の IEC 62852 Ed. 1.0:2014 では、温度サイクル等の環境試験後に湿潤漏れ電流試験などの防水性を含む絶縁性を確認する試験要求が無い為、第三者認証取得品であっても注意が必要である。

コネクタの防水性に問題があると, 多点地絡の危険性が高くなる。

図 3.5.1-1 は、多点地絡によりモジュール付属のコネクタが発火した例であるが、現場でコネクタの組み立てを行う場合も、コネクタの取扱説明書を熟読の上、細心の注意が必要である。

図 3.5.1-1 多点地絡により発火したコネクタ

- [11] ブーツ、コンタクト、ハウジングがロット単位で異なるコネクタもあり、電気的特性が異なることがある。同一仕様を利用することが安全確保に役立つことから「紹介」とした。
- [12] モジュールに付属するコネクタの極性と、ストリング端から接続箱まで延長するケーブルに使用されるコネクタを使い分けるため、モジュール用と延長ケーブル用で極性表示が逆のタイプのコネクタがある。そのようなタイプを使用する場合、ハウジングは、極性キーがつき正極と負極の誤嵌合を防止できるコネクタは施工エラーの防止に役立つ。

3.5.2 ケーブルの選定

【目的】

ケーブル部における直並列アークを避けるため。

【選定指針】

- [1] 高圧の場合、「電線」を利用せず電技解釈第 46 条に準じたケーブル (PV ケーブル) を選定すること。
- [2] 低圧の場合, CV ケーブルや太陽光発電用に開発されたケーブルを選定すること。
- [3] シングルコアケーブル、もしくは絶縁性能が十分な多心ケーブルを選定すること。

【選定指針 解説】

[1] 直流回路における「高圧」とは「750Vを超え7000V以下の電圧」と定義される(電技第2条)。高 圧では、電技に定義される「ケーブル」を利用すること。電技解釈第10条には以下の記述がある。

【高圧ケーブル】(省令第5条第2項、第6条、第21条、第57条第1項) 第10条使用電圧が高圧の電路(電気機械器具内の電路を除く。)の電線に使用するケーブルには、次の各号に適合する性能を有する高圧ケーブル、第5項各号に適合する性能を有する複合ケーブル(弱電流電線を電力保安通信線に使用するものに限る。)又はこれらのケーブルに保護被覆を施したものを使用すること。ただし、第46条第1項ただし書の規定により太陽電池発電設備用直流ケーブルを使用する場合、第67条第一号ホの規定により半導電性外装ちょう架用高圧ケーブルを使用する場合、又は第188条第1項第三号ロの規定により飛行場標識灯用高圧ケーブルを使用する場合はこの限りでない。

電技解釈第 46 条第 1 項の各号において、日本電線工業会が制定した太陽電池発電設備用の直流電路で使用するケーブル (「PV ケーブル」) についての規定がある。 電技解釈第 46 条は以下の記述がある。

太陽電池発電所に施設する高圧の直流電路の電線(電気機械器具内の電線を除く。)は、高圧ケーブルであること。 ただし、取扱者以外の者が立ち入らないような措置を講じた場所において、次の各号に適合する太陽電池発電設備 用直流ケーブルを使用する場合は、この限りでない。

- 一 使用電圧は、直流1.500V以下であること。
- 二 構造は、絶縁物で被覆した上を外装で保護した電気導体であること。
- 三 導体は、断面積60 mi以下の別表第1 に規定する軟銅線又はこれと同等以上の強さのものであること。
- 四 絶縁体は、次に適合するものであること。
 - イ 材料は、架橋ポリオレフィン混合物、架橋ポリエチレン混合物又はエチレンゴム混合物であること。

46-1表

導体の公称断面積 (mm²)	絶縁体の厚さ (mm)
2以上14以下	0. 7
14を超え38以下	0.9
38を超え60以下	1.0

- ハ 日本工業規格 JIS C 3667 (2008)「定格電圧 $1kV\sim30kV$ の押出絶縁電力ケーブル及びその附属品-定格電圧 0.6/1kV のケーブル」の「18.3 老化前後の絶縁体の機械的特性の測定試験」の試験方法により試験をしたとき、次に適合するものであること。
 - (A) 室温において引張強さ及び伸びの試験を行ったとき、引張強さが6.5N/m以上、伸びが125%以上であること。
 - (口) 150 \mathbb{C} に 168 時間加熱した後に(A)の試験を行ったとき、 引張強さが(A)の試験の際に得た値の 70%以上、 伸びが(A)の試験の際に得た値の 70%以上であること。
 - 五 外装は、次に適合するものであること。
- イ 材料は、架橋ポリオレフィン混合物、架橋ポリエチレン混合物又はエチレンゴム混合物であって、日本工業規格JIS C 3667 (2008)「定格電圧1kV~30kV の押出絶縁電力ケーブル及びその附属品ー定格電圧0.6/1kV のケーブル」の「18.4 老化前後の非金属シースの機械的特性の測定試験」の試験方法により試験を行ったとき、次に適合するものであること。
 - (イ) 室温において引張強さ及び伸びの試験を行ったとき、引張強さが8.0N/m以上、伸びが125%以上であること。
 - (□) 150 Cに168 時間加熱した後に(A)の試験を行ったとき、 引張強さが(A)の試験の際に得た値の70%以上、 伸びが(A)の試験の際に得た値の70%以上であること。
- ロ 厚さは、次の計算式により計算した値を標準値とし、その平均値が標準値以上、その最小値が標準値の 85% から 0.1mm を減じた値以上であること。

t = 0.035D + 1.0

- t は、外装の厚さ(単位:mm。小数点二位以下は四捨五入する。)
- D は、丸形のものにあっては外装の内径、その他のものにあっては外装の内短径と内長径の和を2 で除した値(単位:mm)
- 六 完成品は、次に適合するものであること。
 - イ 清水中に1 時間浸した後、導体と大地との間に15,000V の直流電圧又は6,500V の交流電圧を連続して5 分間 加えたとき、これに耐える性能を有すること。
 - ロ イの試験の後において、導体と大地との間に100V の直流電圧を1 分間加えた後に測定した絶縁体の絶縁抵抗が1,000M Ω -km 以上であること。
 - ハ 日本工業規格 JIS C 3660-1-4(2003)「電気・光ケーブルの絶縁体及びシース材料の共通試験方法-第1-4 部: 試験法総則-低温試験」の「8.低温試験」の試験方法により、-40 ±2 $\mathbb C$ の状態で試験したとき、これに適合すること。
 - ニ 日本工業規格 JIS C 3667 (2008) 「定格電圧 $1kV \sim 30kV$ の押出絶縁電力ケーブル及びその附属品 定格電圧 0.6/1kV のケーブル」の「18.10 エチレンプロピレンゴム (EPR) 及び硬質エチレンプロピレンゴム (HEPR) の絶縁体のオゾン試験」の試験方法により試験したとき、これに適合すること。

ホ 日本工業規格 JIS K 7350-1 (1995)「プラスチックー実験室光源による暴露試験方法 第1部:通則」及び日本工業規格 JIS K 7350-2 (2008)「プラスチックー実験室光源による暴露試験方法一第2部:キセノンアークランプ」の試験方法により試験したとき、クラックが生じないこと。

へ 室温において、ばね鋼製のニードルに荷重を加え絶縁被覆を貫通させたとき、ニードルと導体とが電気的に接触した際の荷重(4回の平均値をとるものとする。)が次の計算式により計算した値以上であること。

 $F = 150 \times \sqrt{$ 導体外径

Fは、荷重(単位:N)

ト ケーブルの表面に深さ 0.05mm の切り込みを入れた 3 つの試験片について、1 つは-15 \mathbb{C} 、1 つは室温、もう 1 つは 85 \mathbb{C} C 3 時間放置した後、外装の外径の(3 ± 0.3)倍の直径を有する円筒に巻き、次に試験片を放置して室温に戻した後、清水中に 1 時間浸し、導体と大地との間に 300V の交流電圧を連続して 5 分間加えたとき、これに耐える性能を有すること。」

電技解釈解説第46条では以下の記述がある。

第1項は、高圧ケーブルは一般的に遮へい層を有するよう規定しているところ(\rightarrow 第10条)、日本電線工業会が制定した、太陽電池発電設備の直流電路で使用するケーブル(以下「PV ケーブル」という。)の規格においては、遮へい層を有しないものとしている。PV ケーブルの省令への適合性評価を、平成22 年度電気設備技術基準適合評価に基づき実施した。その結果、O 24 解釈で取扱者以外の者が出入りできないように措置した場所に施設する場合には、ただし書の各号に適合する電線の使用を認めることとした。第一号は、使用電圧は、直流の1500 V 以下であることを定めている。第二号は、基本構造を定めており、遮へい層のない構造も認められる。第三号~第六号では、導体、絶縁体、外装および完成品について、材料・厚さ等の性能、使用環境などにおいて必要と想定される性能、電気的性能等を定めている。これらは、日本電線工業会 JCS4517 「太陽光発電システム用ハロゲンフリーケーブル」から基本的なものを採用したものである。また、②解釈で導体断面積を60mm 2 まで規定した。

[2] 法規上,低圧では「ケーブル」と呼ばれる外装を施した電線種はほとんど利用可能である。しかし、ケーブルには使用用途別に種類があり、用途に合ったケーブルを選定することが事故を未然に防止するのに有効である。太陽光発電の使用環境は、屋外でしかも 60℃以上の高温環境に曝される場合が多いことから、導体最高許容温度が 90℃の CV ケーブル(架橋ポリエチレン絶縁ビニルシースケーブル)や太陽光発電用に開発されたケーブルの使用することが良い。産業機械、電動工具等移動する機械に使用される移動用ケーブルの PNCT (EP ゴム絶縁クロロプレンゴムキャブタイヤケーブル)を使用した例では、被覆が破れる事故が発生している。また、発電所及び工場などの低圧の制御回路に使用される制御用ケーブルの CVV (制御用ビニル絶縁ビニルシースケーブル)を使用した例では、使用環境温度が日射の影響で導体最高許容温度 60℃を超えていたため、蓄熱による短絡事故が発生している(参考文献、表 3.5.2-1)。

表 3.5.2-1 太陽光発電用ケーブルと周辺での不具合事例の調査結果 (参考文献: JECTEC)

故障事例	使用年 数	敷設地域	故障箇所	敷設場所	異常の有無	故障の要因	備考
げっ歯類 (リス, ネズミ, むささび) に よる地落, 断線		各地	屋根上電線	モジュール裏側	正常	動物	海外では、補助金の制限として、ダクトによる動物からの保護を 義務付けるケースもある
多芯 CVV を使用による蓄熱による短絡		愛知県	管内	モジュール〜接続箱	異常	過剰通電/日	温度上昇し短絡したトラブル。CVV は定格温度(導体)が 60℃であり、日射の影響で雰囲気が定格 60℃を超えていため、短絡が起
		長野	接続箱	接続箱内	異常	射による過 熱による短	きた可能性あり。また確認はできなかったが、細い導体のCVVを 使用し、導体発熱により過熱した可能性もある。 また、海外の施工基準(IFC)では、短熱を発生しづらくしたり、
		岐阜県	PF 管内	モジュール箱下屈曲部	異常	絡	放熱をよくする観点で、CVV のような多芯ケーブルは使用を禁止している。
PNCT 破壊(導体見え)		地域関係なし	曲げ部分	屋外敷設箇所 (日射の有無関係なし)	正常	不明	設置場所,屋内屋外関わらず、割れあり。短絡の可能性あり。原因 はオゾンクラックと考えられる。
電線管内での水たまりによる電線の短絡			接続箱下のケ ーブル屈曲部	モジュール〜接続箱	電線管の異常	水による短 絡	電線管が割れ、屈曲部に水がたまり、この部分で電線が短絡。ただし、電線管が破れた理由は不明。
ステープルによる 地落			屋内	主に 接続箱〜コンディ ショナー	異常	固定方法	丸型ケーブルをステーブルでとめることにより、ケーブルに力が かかり、ステープルと導体が接触し地絡。
モジュール固定のケーブル噛み込み	敷設時	各地	モジュール周 辺	モジュール間, モジュー ル〜接続箱	異常	固定作業	モジュールを固定する部分にケーブルを噛みこんでしまい、被覆 が変形。
突起物への接触	敷設時	各地	屋根裏	接続箱~モジュール	異常	配線作業	屋根裏など狭い空間に配線時、突起物に引っ掛かり、被覆が破損。
車によるケーブル上通過	敷設時	街中			異常	敷設作業	道路で敷設準備をする場合、車に引かれ、被覆が破損。
端子加工時の導体傷つけ	敷設時		端子部	主に屋根上	異常	配線作業	端部加工が難しい場合、素線を傷つけ導体抵抗があがり、異常加 熱が発生。
砂塵による電線の破壊		富士山	電線・電線 管・パネル	電線露出部全て	なし	砂塵	富士山に布設した太陽光発電装置。強風、砂塵が舞う環境なため、 電線被覆が破壊。
					電線周辺での)トラブル事例	
インシュロックはずれ		地域関係なし	固定部	架台接続部	正常	環境亀裂応力	屋外で使用している電線は、インシュロックが壊れたるんだ状態になる。この場合、風による屈曲や建築物との磨耗が起きる。 架台の亜鉛メッキの腐食生成物(ZnCI)や融雪剤 CaCI)の影響が原因。また、架台の腐食生皮物(ZnCI)や融雪剤 CaCIの影響が原力。また、実台の腐食性生物は有機酸と結合することが多く、アルカリ性になる。(pH12~13)
ぐるぐる巻き		東京	モジュール〜 接続箱の区間	屋外配線	異常	熱	プリアッセンブリ電線使用時、余長をぐるぐる巻きにし流さ調整 している施工例あり。破壊事例ないが過熱の可能性あり。
虫による短絡 (端子間短絡)			端子間	接続箱内	正常	虫の侵入	短絡は、端子間に虫が入り込んだため燃焼しており、電線は問題 ない。電線は耐延焼性が要求される。
接続箱外での接続			モジュール〜 接続箱の区間	電線接続部分	異常	地絡,短絡, 導体腐食	プリアッセンブリ電線使用時、長さが足りない電線を補足するため、耐水性が十分でない接続方法で接続する。
施工中の短絡 火災	敷設時		XLPE の延焼	コンディショナー内		敷設作業時 の短絡	太陽電池は活線なため、施工中に導体接触による短絡による燃焼 がおきやすい。このため、耐延焼性が要求される。
PV コネクター外れ			コネクタ	モジュール付近		接続忘れ、ヒ ートサイク ル	電線には、直接は関係ないがヒートサイクルによる影響を電線で も確認する必要がある。
モジュール下の鳥の営巣							電線への糞の付着(酸性、腐食性あり)、温度上昇の発生などのリスクが発生。

参考文献: JECTEC, 太陽光発電用ケーブルの信頼性に関する調査研究, 2010

[3] 配線を行う場合には、シングルコアケーブルを用いる方が多心ケーブル(図 3.5.2-1 2 心ケーブルの例: 導体の外周に絶縁体を施した線心 2 本をより合わせるか平行に並べ、その外周に一括して外装を施したケーブル)を用いるよりも正負極間の短絡事故リスクを下げることができる。日本の太陽光発電のアレイ用ケーブルとしては 600V 単心 CV または HCV が用いられることが多いが、外力による同一ストリング間や異極間の短絡を防止するだけであればデュプレックスケーブル(図 3.5.2-1 の単心ケーブルを 2 本より合わせたケーブル)でもかまわない。

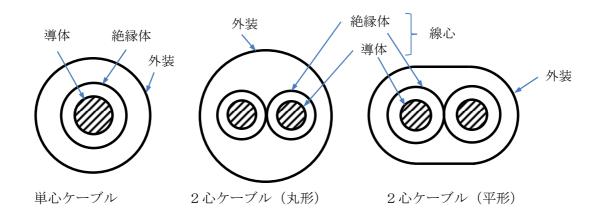


図 3.5.2-1 ケーブルの種類

【紹介事項】

[4] 太陽電池ストリングにブロッキングダイオードを利用する場合と、ヒューズを利用する場合とで事故電流の様相が異なることが示されている。

【紹介事項 解説】

[4] 太陽電池ストリングにブロッキングダイオードを利用する場合と、ヒューズを利用する場合とで事故電流の様相が異なるため、適正なケーブルの設定が必要である。太陽電池ストリングにブロッキングダイオードを利用する場合、ブロッキングダイオードは事故等による他のストリングからの逆電流の発生を防ぐことができる。一方、ヒューズを利用する場合には、ヒューズが溶断するまでの時間は事故電流(逆電流)が流入する。並列数が多い場合は、事故電流が大きくなるため、溶断時間が早い。海外ではヒューズの使用が一般的である。

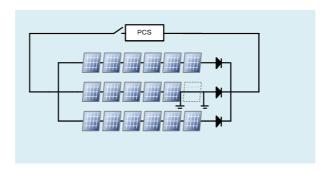


図 3.5.2-2 条件 PCS 非接続、太陽電池 1 ストリングだけに不足電圧の場合ブロッキングダイオードが 健全な場合は逆バイアスがかかり、事故電流は発生しない。

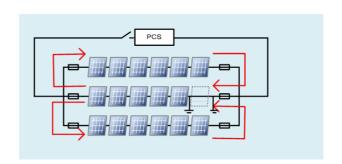


図 3.5.2-3 条件 PCS 非接続、太陽電池 1 ストリングだけに不足電圧の場合事故電流は他のストリングから流入するため Isc より大きくなる。

第4章 運用保安に関する一般事項

本運用保安に関する事項は、現場作業概略をまとめたものである。運用・保安には、「測定」「推論」「対処」が必要であるが、ここでは現場作業での「測定」を助けるための材料を提供する。「測定」の結果を基に、事故やそれに至る恐れが無いことを「推論」するためには、測定以上の作業量が必要である。ここでは、まず測定方法を示し、明らかな危険の発見を見落とさないことの手助けとすることを目的とした。そのため、本章に示す「測定」要件項目のみを実施したことが、安全性を確保できることではないことに留意して欲しい。

【目的】

太陽光発電設備に起因する感電や火災を未然に防止し、運用における保安を確保するための参考情報を 提供する。

【運用・保守指針】

- [36] 太陽光発電設備は、所定の発電性能を発揮するとともに、電気的あるいは構造的な要因により、人体に危害を及ぼしたり他の物件に損傷を与えたりないように、また、他の電気設備その他の物件の機能に電気的又は磁気的な障害を与えないように、維持すること。
- [37] 太陽光発電設備は、保安規程を定め、運用管理を行うこと。
- [38] 太陽電池アレイの絶縁抵抗測定を実施すること。
- [39] 定期的にバイパス回路の確認を行うことが望ましい。
- [40] 逆流防止ダイオードが短絡故障することによって、低電圧ストリングが焼損する懸念がある場合は、逆流防止ダイオードが短絡故障していないことを確認すること。

【運用・保守 解説】

- [1] 本項の必要は自明である。また、電気関連の法令にもその必要性が明示されている。電気事業者の電力系統に接続される太陽光発電設備は電気事業法において「電気工作物」とされ、出力 50kW 未満で電圧 600V 以下のものは「一般用電気工作物」、出力 50kW 以上のものは「自家用電気工作物」と区別される(電事法第 38 条)。どちらの場合も「電気設備に関する技術基準を定める省令」(電気設備技術基準)に適合するよう維持する必要があるが(電事法第 39 条)、電気設備基準(省令)の目的には「人体に危害を及ぼし又は物件に損傷を与えないようにすること」(省令第 4 条)、「他の電気設備その他の物件の機能に電気的又は磁気的な障害を与えないこと」(省令第 16 条)が掲げられている。
- [2] 出力 50kW 以上の太陽光発電設備は自家用電気工作物に分類される。自家用電気工作物は保安を一体的に確保するための保安規程を定め、それを守らなければならない(電事法第 42 条)。保安規程の標準的な条文例や、巡視・点検の基準表が、経済産業省中部近畿産業保安監督局のホームページで公開されており、年次点検では、保護装置の試験等が推奨されている(表 4-1)。なお、これらはあくまで例示であり、最低限の項目であるため、個々の設備および安全性を確保するために必要な項目を作成する必要がある。

http://www.safety-kinki.meti.go.jp/denryoku/taiyoko/hoankitei_taiyoko.doc http://www.safety-kink.meti.go.jp/denryoku/taiyoko/taiyokokijun.xls) また、経済産業省では、パワーコンディショナの点検方法について動画を配信している。

http://www.enecho.meti.go.jp/category/saving_and_new/ohisama_power/tv/

http://www.enecho.meti.go.jp/category/saving and new/ohisama power/tv/movie/vol001-6/vol001-6-3.wmv

http://www.enecho.meti.go.jp/category/saving and new/ohisama power/tv/movie/vol002-1/vol002-4.wmv

表 4-1 には、自家用電気工作物保安管理規程(JEAC8021-2013)に示された太陽光発電所の点検項目も併せて示した。

50kW 未満の太陽光発電設備は一般用電気工作物に分類され、保安を確保するための保安規程を制定することは、法令に記載されていないが、太陽光発電設備の危険の存在は、設備規模によらないため、保安点検は必要である。

太陽光発電協会は、10kW 以上 50kW 未満の太陽光発電設備の保守点検の指針を示すため、「太陽光発電システム保守点検ガイドライン【10kW 以上の一般用電気工作物】」を作成し、2014 年 5 月に公表した。本ガイドラインは業界が自主的に定めたものであるが、太陽光発電設備の保安に最低限必要な点検方法が示されている。10kW 未満の太陽光発電設備の場合、保安規程を定めることは法令に記載されていないが、太陽光発電電協会は、10kW 未満の太陽光発電設備の点検の項目と方法に関する指針を示すため「太陽光発電システム保守点検ガイドライン【住宅用】」を作成し、2012 年 8 月に公表した。上記と同じくこのガイドラインも業界が自主的に定めたものであるが、やはり太陽光発電設備の保安に最低限必要な点検方法が示されている。これらのガイドラインには、日常点検方法(毎月1回程度、または悪天候(雨、風、雪、雹、落雷など)後や震災時の後に点検を行うことを推奨)と、4年毎に一回以上実施する定期点検項目とが示されている。その項目を表4・2 および表4・3 に示す。

なお、表 4·3 には、太陽電池アレイの定期点検項目に「ストリングの短絡電流測定」が挙げられているが、測定対象の太陽電池モジュールのバイパス回路が開放故障していた場合、一部の太陽電池セルが逆電圧象限動作となり、太陽電池モジュールの損傷や電気事故となる恐れがあるため、本測定は実施しないことを推奨する。実施が必要な場合は、バイパス回路の健全性を確認した後に行うことが必要である(バイパス回路の確認方法は、[6]を参照)。なお、10kW 未満の太陽光発電設備向けに太陽光発電協会の作成した「太陽光発電システム保守点検ガイドライン【住宅用】」よりも、同協会作成の「太陽光発電システム保守点検ガイドライン【10kW以上の一般用電気工作物】」がより網羅的である。後者による点検を実施したほうが運用における安全性の向上により有効である。

さらに、日本電機工業会は、太陽光発電設備の点検要領を JEM-TR228 として公開している。その項目を表 4-4 にまとめた。なお、表 4-1-4-4 には挙竣工時の点検項目は含めていない。

表 4-1 中部近畿産業保安監督局点検項目および自家用電気工作物保安管理規程点検項目

	中部近畿産業(点検表		自家用電気工作物保安管理規程 JEAC8021-2013		
	毎日	1年毎	2 回/年	1年毎	取説から判断
太陽	外部損傷, 亀裂, 弛み, 汚損, 発錆		表面汚れ,破損,腐食, 発錆,配線損傷,弛み		
電池アレイ	接地線接続部	接地抵抗測定		接地抵抗測定	
1 1 1		絶縁抵抗測定			絶縁抵抗測定
接	外部損傷, 亀裂, 弛み, 汚損		腐食,発錆,配線 の損傷		
続箱	接地線接続部	接地抵抗測定		接地抵抗測定	
小 日		絶縁抵抗測定			絶縁抵抗測定
パワー コンデ ィショ ナ	外部の損傷、きれ つ、ゆるみ、汚損、 加熱、発錆、計器 の異常、表示札表 示灯の異常、接地 線接続部、その他 必要事項	絶縁抵抗測定、 系統連系保護 装置の特性試 験、単独運転機 能確認、その他 必要事項	腐食、発錆、損傷、異音、異臭、換気ロフィルタ(ある場合)の目詰まり	絶縁抵抗測定、 表示部の動作 確認	
その他				異音, 異臭, 指示状態	

表 4-2 太陽光発電システム保守点検ガイドライン【10kW以上の一般用電気工作物】

(太陽光発電協会)点検項目

	日常点検	定期点検
	モジュール表面に著しい汚れ、傷お	/~/771MI/X
モジュ	よび破損が無い	 バックシートに著しい汚れ,傷,破損が無い
ール	モジュールフレームに破損,著しい	(裏面の点検が可能な場合)
	変形が無い	
#		著しい基礎のひずみ, 損傷, ヒビなどの破損進行が無い
基礎		架台の変形,傷,汚れ,錆び,腐食および破損が無い(メッキ鋼板の端部
	架台に著しい傷,汚れ,さび,腐食,	の進行しないさびを除く)
, 架	破損が無い	塩害地区では特に錆び,腐食,破損を確認
台		地上設置の場合は、凍結震度の影響、積雪による沈降、不等沈降、地際
		腐食、架台多連結による膨張変形等が無い
締	!	モジュールおよび架台を固定するボルト、ナットの緩みが無い
結		折板屋根では、ハゼ金物の増し締め確認
ア	!	接地線に著しい傷、破損等が無く、正しく接続されている
ν	ケーブルに著しい傷,破損が無い	コネクタは確実に結合され損傷が無い。過剰な張力がかかっていない。 余分な緩みが無い
イ	!	デガな板みが無い 配線に著しい傷,破損が無い事
配		電線管に著しい傷、汚れ、さび、腐食、破損、変形が無いこと
線	い傷、腐食等が無い	配管・ラックの防水、支持・固定状態確認
屋	屋根葺材が破損していないこと,隙	屋根葺材(折板屋根を含む)との接合部の損傷が無い
根	間やズレ無く収まっている	コーキングに異常が無い
		扉の開閉に異常が無い
		鍵付きの場合は施錠できること
	!	内部に、塵埃、雨水、害虫、小動物などの侵入が無く著しい汚れ、腐食、
	!	錆び,破損,変形が無い
	!	配線に著しい傷,破損が無い
		コーキングなどの十分な防水処理がされていること
		水抜き穴などの処理がされている
接	 外観に著しい腐食, さび, 傷, 及び	内部機器に脱落などが無い
続	機能を損なう可能性のある破損が	配線ケーブルを収める配管に著しい傷、腐食などが無い
箱	無い	端子台、内部機器にねじ緩みが無い
		ハンドル等の操作部がある場合は、確実に操作できる
		接地線に著しい傷、破損等が無く、正しく接続されている
		避雷素子(SPD)、バリスタに劣化が無い
		ストリング毎の絶縁抵抗測定 接続箱出力端子と大地の間の絶縁が 1MΩ以上
		接地抵抗が規定値以下
		安地抵抗が規定値以下 ストリング毎の電圧に異常が無い
	!	I-V 特性に異常が無い
	H MAR OFF A T JUST LE 1917 - LET LE	外箱の固定ボルトなどに緩みがなく確実に取り付けられていること
	外箱の腐食及び破損がなく, 充電部	雨水の侵入がないこと
パワー	が露出していない。(鍵付きの場合)	
コンデ	扉の施錠がされている。	PCS 内外に部品の落下がないこと
ィショ ナ	PCS へ接続する配線に損傷がない	配線ケーブルを納める配管に著しい傷,腐食などがないこと
,	接続ケーブルを納める配管に著し	接続ケーブルを納める配管に著しい傷、腐食などがないこと接続端子ネ
	接続ケーノルを納める配官に者し い傷,腐食などがないこと	ジの緩みがないこと
	* 物, 胸皮はこかは*ここ	✓ V/阪のN⁴はV ' □ C

		端子、キャップの変色がないこと
	通気孔をふさいでいない	接地線に著しい傷,損傷がなく,正しく接続されていること
	換気フィルタ(ある場合)が目詰ま	ネジの緩みがないこと
	りしていない	CS 入力端子 - 接地間が 1 M Ω 以上であること (測定電圧 DC500V)
		単相 3 線 100/200 V
		主回路端子台 $\mathrm{U}\mathrm{-O}$ 間, $\mathrm{W}\mathrm{-O}$ 間は $\mathrm{AC}101\pm6\mathrm{V}$ ある
	 運転時の異常音, 異常な振動, 異臭	三相 3 線 200 V / 三相 4 線式灯力併用配電線
	及び異常な過熱がない	 主回路端子台 U-V,V-W,W-U 間は,AC202±20 である(系統電
		圧が高いと出力電力抑制が働きやすいことに
		留意)
	│ │表示部に異常コード, 異常を示すラ	停止中に運転スイッチ"入(運転)"で連系運転すること
	ンプの点灯, 点滅などがない	連系運転中に運転の表示又は運転を表す表示が行われていること
	七二世の水赤山川)-田光パム	運転中に運転スイッチ"切(停止)"で瞬時に停止すること
	表示部の発電状況に異常がない	停止中に停止の表示又は停止を表す表示が行われていること
		引込口開閉器を遮断したとき、瞬時に停止すること
		また、復電したとき、所定時間後に自動復帰すること
		1) PCS を連系運転とし、引込口開閉器を開放して停止状態とする
		2) 保護装置が働き PCS が直ちに(電力会社との協議値
		どおりに)停止することを確認した後、再投入する。投入から PCS が
		 自動復帰するまでの時間を測定し、これが所定の時間(電力会社との協
		議値通り)であること。
		(電力会社から手動復帰を指示されているときは,復電したときに自動復帰しないこと。)
		自立運転機能付きの場合,自立運転に切替えたとき,
		自立運転用専用端子から製造業者の指定の電圧が出力
		されること。
		PCSの運転、停止などの状態表示、発電電力、発電電力量などの表示を
		確認することによって、PCSの動作が正常であることを確認する
		1) PCS の運転・停止の切替を行ない,運転,停止などの状態表示を確
		認する
		2) 運転しているときの,発電電力,発電電力量などの PCS の表示を確
		認する
		3) PCS の状態表示,発電電力,発電電力量などの表示と監視装置・データ収集装置の表示を確認する
		機器に著しい傷,機能を損なう可能性がある破損がない
その他		端子まわりに著しい汚れが無いこと
開閉	 外箱の外観に著しい腐食, さび, 及	ハンドル等の操作部がある場合は、確実に操作できる
器, ELB,	び機能を損なう可能性のある破損	温度異常により、絶縁ケーズや端子部分に加熱による変形などがないこと と
WH	が無い	確実に取り付けられていること
等)		配線に著しい傷,損傷が無い
		端子台,内部機器にねじ緩みが無い
周囲	陰の状態の確認、鳥の巣、雑草、樹	
		130

状況	木等の状態が安全,性能に著しい影	
	響の無いこと	

表 4-3 太陽光発電システム保守点検ガイドライン【住宅用】(太陽光発電協会) 点検項目

	日常点検(毎月,悪天候,災害後)	定期点検(4年に1回以上)
モジュー	表面に汚れ、キズ、破損が無いこと	
ル	フレームに破損、著しい変形が無いこと	
架台	架台に腐食、錆びが無いこと	
ケーブル	外被部分に損傷が無いこと	
	7 1 10 A 10 7 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	接地線に確実に固定されていること
		ネジの緩みが無いこと
コーキン		指定された箇所に確実にコーキングされていること
グ		防水シーラーが指定された箇所に貼り付けてあること
屋根葺材	屋根葺材が破損していないこと, 隙間やズレ がなく収まっていること	777.10
屋根裏		野路裏、天井裏に結露、雨漏りの痕跡が無いこと
配電線管	配線ケーブルを収める配管にキズ,腐食などが無いこと	
架台接地		D種接地抵抗測定 100Ω以下(低圧電路に漏電遮断器な
米口 按地		どがあれば 500Ω以下)
ストリン		ストリング開放電圧確認、初期値との比較
グ電圧		IV 特性の測定が好ましい
ストリン		ストリング短絡電流確認、初期値との比較
グ電流		日射計で日射条件も測定、記録する。
	外箱に腐食、破損が無いこと	ネジの緩みが無いこと
接続箱	配線に異常が無いこと	接地線に異常が無いこと、接地線にねじ緩みが無いこと 各ストリングの絶縁抵抗値が 0。2M Ω以上であること (500V において) 出力端子一接地間の絶縁を各ストリング毎に測定し, 0。 2M Ω以上であること(500V において) D 種接地抵抗測定 100 Ω以下(低圧電路に漏電遮断器な
		どがあれば 500Ω以下)
	腐食及び破損がないこと	取付状態が本体の質量に耐えうる壁構造であること
		機器周辺にメーカーから指定されたスペースが確保さ
		れていること
	Light (cf.) and (cf.) and (cf.)	屋内用の場合,過度の湿気,油蒸気,煙,腐食性ガス,
	接地線に異常がないこと	可燃性ガス,塵埃,塩分,火気などがないこと,引火物
パワーコ	ネジに緩みが無いこと 	がないこと
ンディシ ョナ		屋外用の場合,冠水及び,冠雪の恐れがない場所に設置 されていること,火気,可燃性ガス及び,引火物がない こと
	自立運転切り替え後、表示モニターで自立運	自立運転切り替え時,専用コンセントから最大 1500W
	転切替えの確認を行う	までの負荷が使用できること
	通気孔を塞いでいないこと, 指触による以上	整定値の確認
	夏のないこと	OVR:系統過電圧
	及りなり、こと	V . 24 - / NI/JERG 10/22

天面、地面、側面距離が十分保たれているこ	UVR:系統不足電圧
کے	OFR:系統周波数上昇
	UFR:系統周波数低下
	電圧上昇抑制
	単独運転検出レベル
	復帰タイマー
	接地抵抗值測定
運転時の異常音,異常振動,異臭がないこと	D 種接地工事:100Ω以下(低圧電路に漏電遮断器など
	設置してあれば、 500Ω まで可)
表示状況,発電状況に異常がないこと	パワーコンディショナー停止後、所定時間で自動復帰す
31.7 (10.6) 32.2(10.1) 31.10	S
	絶縁抵抗測定入出力端子—接地間
	指定された測定条件で各モジュール系統(各ストリング
	回路)
	毎,全て測定し,その値が規定値以上であること
	1 MΩ以上(測定電圧 DC500V)

表 4 4 日本電機工業会 小出力太陽光発電システムの保守・点検ガイドライン(JEM-TR228)点検項目

	日常点検(毎月, 地震, 強風, 大雪後)	定期点検(4年に1回 以上)
ア	ガラスなど表面に著しい汚れ及び破損が無い	接地線に異常が無い,ネジの緩みが無い
レ	架台に腐食および破損が無い(メッキ鋼板の	
イ	端部の進行しないさびを除く)	
1	接続ケーブルに損傷が無い	
	外箱に腐食および破損が無い	外箱に腐食および破損が無く、充電部が露出していない
	接続ケーブルに損傷が無い	配線に異常が無い,ネジの緩みが無い
		接地線に異常が無い,ネジの緩みが無い
接		水の侵入またはその跡が無い
続		配管部での水の侵入またはその跡が無い
箱		全ストリングの、太陽電池-接地間の絶縁抵抗値
711		0.2MΩ以上(500V)
		出力端子ー接地間の絶縁抵抗値
		1MΩ以上(500V)
		全ストリングの極性が正しく、開放電圧が規定の電圧である
そ		開閉器の接続端子にねじ緩みが無い
の		接続ケーブルに損傷が無い
他		1MΩ以上(500V)

①外観の目視点検に関する事項

外観の目視点検は、焦げ等、危険な兆候を発見する有効な方法であり、「自家用電気工作物保安管 理規程」(日本電気技術規格委員会 JESC E 0021) にも明示された項目でもあるため必須項目である。 太陽電池アレイの目視点検を実施する際のポイントを以下に示す。

太陽電池モジュールに何らかの異常(例えばモジュール内直列抵抗の増加,タブ線間の絶縁不良, 特定のセルの電流低下など)があった場合、その箇所は発熱する場合が多いためはんだ接続部(図 4-1) や EVA およびバックシートの変色や (図 4-2 および図 4-3), バックシートの剥離 (図 4-4) な どの外観上の変化となって表れることがある。

これらの中で、安全の観点から直ちに運転を停止する必要があるモジュールは図 4-1 のような不 具合である。はんだ接続部の「焦げ」もしくは EVA の極度の変色であり、これは直列アーク発生 を意味しており、そのまま運転を継続すれば発火のリスクがある。したがって、このようなモジュ ールを発見した場合には迅速に停止し取り外さなければならない。

図 4-1 はんだ接続部の変色の例 図 4-2 セルの発熱による EVA の変色の例

「ガラス割れ」も目視点検によって発見することができる太陽電池モジュールの損傷の一つである が、それが作業者の観察位置から遠い場合や直射日光があたっていない時などには気が付かないこ ともある。

通常の電気機器の点検では、電気的接続部にゆるみがないかを確認する。しかし、太陽電池アレイ の場合は、風等による振動で太陽電池モジュールを固定しているネジがゆるむ恐れがあるため架台 への固定ネジも点検することが望ましい。大規模な太陽光発電設備ではそのネジが数万本以上にも 達し、その全てを確認することは容易なことではない。しかし、振動等でのゆるみは設置後まもな く起きることが多いため、設置後第一回目の定期検査においてのみ実施することも考えられる。

図 4-3 セルの発熱によるバックシートの変色の例

図 4-4 はんだ接続部の発熱により剥離したバックシートの例

②赤外線カメラによる点検に関する事項

太陽電池モジュールに何らかの異常(例えばモジュール内直列抵抗の増加,タブ線間の絶縁不良,特定のセルの電流低下など)があった場合,その箇所は発熱する場合が多いため,運転中の太陽電池アレイの表面分布を赤外線カメラで観察することが有効である。

たとえば、図 4-5 および図 4-6 は、それぞれ横タブーインターコネクタ間の接続不良による発熱の様子、インターコネクターセル裏面電極間の接続不良による発熱の様子の観察例である。

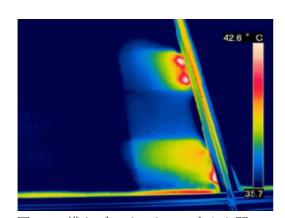


図 4-5 横タブーインターコネクタ間の 接続不良による発熱の例

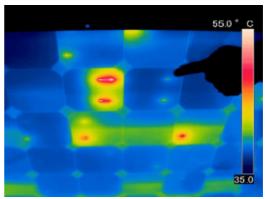
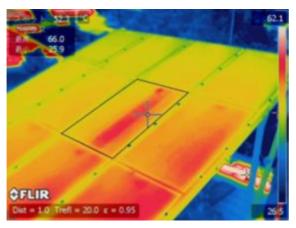



図 4-6 インターコネクターセル間の 接続不良による発熱の例

また、図 4-7(a)は一つのクラスタのセルストリングが導通不良となったモジュール(黒線で囲んだ部分)の表面温度分布である。導通不良となったクラスタが他のクラスタよりわずかに温度が高いことがわかる。これは当該クラスタが発電していないことでため照射された太陽エネルギーが電

気エネルギーに変換されずすべて熱に変わっているためである。このような状況になっているクラスタはバイパス回路が常時動作しているため、同図(b)に示すように端子箱内部のバイパスダイオードも順電流損失により発熱している。

(a)モジュールの表面温度分布

(b)端子箱内の温度分布

図 4-7 クラスタのセルストリングが導通不良となったモジュールの赤外線カメラ観察例

図 4-8 は、マルチストリング方式のパワーコンディショナの入力チョッパの一つが故障したことにより、当該ストリング(白破線で挟まれた部分)が発電を停止し開放状態となっている時の表面温度分布である。当該部分がやや温度が高く観察されるのは、上記の発電していないクラスタと同じ原理である。

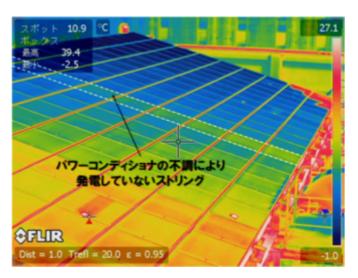


図 4-8 開放状態となっているストリングの表面温度分布の観察例

このように赤外線カメラによる太陽電池モジュールの表面温度の観察は、保安点検に有効な方法の一つであるが、赤外線カメラを通じて得られる表面温度分布の情報は、太陽光発電設備の動作状態や周辺環境(モジュールの汚れ、周囲の景物からの影や放射、作業者自身の影)、天候、時間帯、季節、作業者と対象物との距離、赤外線カメラ自体の性能の影響を強くうけるため、本方法だけに頼った判断は誤認(問題のあるモジュールを見逃す場合と健常なものを問題のあるモジュールと判

定する場合の双方)を招く。また、たとえ誤認がないとしても赤外線カメラだけで太陽電池アレイ /モジュールの安全性が完全に確認できるわけではない。これだけに頼った点検をしてはいけない。

③パワーコンディショナの交換部品に関する事項

表 $4-1\sim4-4$ には、一般的な点検項目として、パワーコンディショナの機種を限定せずに公開されているものを紹介した。各パワーコンディショナの取り扱い説明書には、ユーザーが日常行えるチェック項目やメーカーによる点検項目が示されている。 $50\,\mathrm{k}\,\mathrm{W}$ 未満に関しては日常巡視では確認できない設備の劣化や損耗などについて、専門技術者が数年(4 年程度)に 1 回以上実施する定期点検がある。また、 $50\,\mathrm{k}\,\mathrm{W}$ 以上に関しては保安規定により、年数回の法定点検と、 $P\,\mathrm{C}\,\mathrm{S}$ 製造者が数年に 1 回程度推奨する精密点検がある。精密点検は製造者の担当者が、寿命部品の交換と部品の健全性の確認を行う点検である。寿命部品の例を表 4-7 に示す。

 No
 部位

 1
 防塵フィルタ

 2
 冷却ファン

 3
 LED表示(液晶表示パネル)

 4
 ヒューズ

 5
 コンデンサ

表 4-5 寿命部品の例

④絶縁抵抗測定に関する事項

点検項目には、モジュール取り付けネジの緩み確認など、機械的な不具合の点検も一部含まれているが、多くの点検項目は電気的な故障の発見のためのものである。電気的な故障には以下の $\mathbb{1}$ ~③ がある。

- a 絶縁の低下
- b 導通の低下
- c.素子の故障

(絶縁の低下の有無の検査としては,既存ガイドラインにもケーブル被覆など外観の検査と絶縁抵抗測定が挙げられている。日本電機工業会 JEM-TR228 には絶縁抵抗測定の具体的な手順が説明されているが、そこで挙げられている太陽電池ストリングの短絡を日中に実施することは危険が伴う。一方太陽電池ストリングが開放状態のまま、絶縁抵抗計で測定した場合は、絶縁抵抗値を求めることが困難である。そこで、既存文献(吉富政宣 太陽光発電システム向け各種絶縁抵抗測定法の得失検討、太陽エネルギー,40(3) p105-118 (2014))を参照して実施することが必要である。

接続箱のパワー回路部がプリント配線基板(PCB) から成る場合には、基板内における線間の絶縁が低下していることがある。しかし、既存のガイドラインに挙げられた検査項目の中には、この点検は示されていない。従って、接続箱がプリント配線基板(PCB)を含んでいる場合は、線間の絶縁検査を実施することが好ましい。ただし、これに先立ち、線間 SPD の耐圧仕様を把握し、それを超

えない電圧で実施しなければならない。

導通の低下の有無の検査としては、端子緩みのチェックと接地線の状態確認が挙げられている。端子締め付け部と接地線以外に、導通低下が懸念される箇所として、太陽電池モジュール内と接続箱のプリント配線基板(PCB)内が挙げられる。太陽電池モジュール内の導通低下としては、太陽電池セル自体やセル間の導通低下よりも、バイパス回路の導通低下や開放が、安全上は問題であり、点検または監視が必要である。上記の既存ガイドラインにはこの点検に関する記載が無いが、本文書には、その方法を記載したので本章の[4]参照されたい。

素子の故障の点検例として、上記表 4-2 の中には、「サージアブソーバー(SPD)に劣化が無いことを確認するべきこと」が示されているが、その具体的な方法は示されていない。しかし、目視で故障の有無が分からない SPD が使用されている場合も、その動作電圧が分かっていれば、絶縁抵抗計を利用して劣化の有無を判断することができる(表 4-5)。SPD が開放モード故障した状況では、SPD による保護機能が失われているので、落雷時の機器損傷の可能性が高まるが、検査しなければ故障に気づかない。これに対し、対地 SPD の短絡故障は地絡であり、線間 SPD の短絡故障は線間短絡である。対地 SPD が短絡故障しても、地絡検出機能によって検出され、パワーコンディショナ停止によって帰路を遮断できれば、事故に至る恐れは低減できる。しかし、線間 SPD が短絡故障した場合は、事故電流の発生が避けがたい。従って、アレイ全体やサブアレイのための線間 SPD が短絡故障した時への対策としては、分離器(ギャップアレスタや 225A のブレーカ等)を使用することが必要であり、ストリングのための線間 SPD の短絡保護としては、ストリングの過電流防止に直流ヒューズを具備すること、もしくは逆流防止ダイオードを使用しそれが短絡故障していないことを定期的に確認することが必要である。

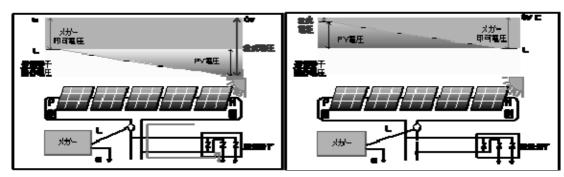
なお、表 4-6 に示した点検は、SPD の動作電圧が分かっていなければ実施できない。従って、接続箱に内蔵される SPD はもちろん、パワーコンディショナに内蔵される SPD についても、その仕様を明確にしておくことが必須である。

表 4-6 SPD の故障モードとその点検方法

短絡故障	開放故障	
絶縁抵抗計によって	絶縁抵抗計によって	
SPD 動作電圧未満の電	SPD 動作電圧を超える	
圧を印加し,通電しなけ	電圧を印加し、通電す	
れば正常	れば正常	

[3] 太陽電池アレイの絶縁抵抗測定は、自家用電気工作物保安管理規程(日本電気技術規格委員会 JESC E 0021)には項目として挙げられていないが、実際には多くの場合実施されており、感電・火災を未然に防止することに有用である。

太陽光発電設備では、1 枚 250W 程度の太陽電池モジュールの直並列接続によって太陽電池アレイが構成されているため、回路の絶縁抵抗を測定するためには、太陽電池池モジュールそのものの絶縁抵抗も同時に測定することが可能な測定方法が求められる。


一般社団法人日本電機工業会が作成した「小出力太陽光発電システムの保守・点検ガイドライン(JEM-TR228)」は、太陽電池回路の絶縁抵抗測定試験方法として、絶縁抵抗計を使用した「P-N間を開放した状態で行う方法」と「P-N間を短絡した状態で行う方法」の二種類を推奨している。ただし、この方法はどちらも検出不感帯はないが、地絡を検出した場合に地絡箇所を特定することはできない。

①一般の絶絶縁抵抗計(メガー)による方法

a. P-N 間を開放した状態で行う方法

P-N 間が開放状態であるため、日中の場合は各太陽電池モジュールに開放電圧が発生している 状態で実施する絶縁抵抗測定方法である。試験回路を図 4-9 に示す。具体的な作業手順は以下のと おりである。なお、上記したように太陽電池モジュールに開放電圧が発生しているので、作業者は 感電に注意すること。

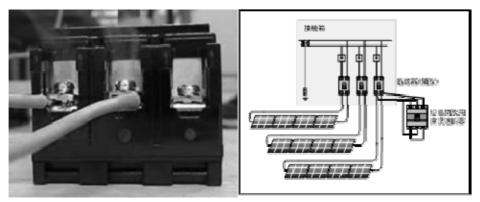
- ・ 測定する太陽電池ストリングの開放電圧が 500V 未満の場合は 500V 絶縁抵抗計を,開放電圧が 500V 以上の場合は 1000V 絶縁抵抗計を用意する。
- ・ 接続箱に避雷素子 (SPD) が備えられている場合には、避雷素子の接地回路を開放する。
- ・ 始めに P 側端子を絶縁抵抗計の「LINE」側に、次に接地線側を絶縁抵抗計の「EARTH」側にそれぞれ接続する。
- ・ 絶縁抵抗計の電圧を印加して絶縁抵抗を測定し、表 4-6 に示す判定基準を満たしているかを確認する。図 4-9a)に示すとおり、このとき各太陽電池モジュールには、絶縁抵抗計の印加電圧に各太陽電池モジュールの開放電圧が加わる。ケーブルの静電容量や日射強度、温度の変化により全体の印加電圧が変化するため、安定するまでには若干時間を要する場合がある。
- ・ 次にN側端子を絶縁抵抗計の「LINE」側に、接地線側を絶縁抵抗計の「EARTH」側にそれぞれ接続し、絶縁抵抗計の電圧を印加する。この場合は図 4-1b)に示すとおり、P側に接続された太陽電池モジュールには、絶縁抵抗計の印加電圧から各モジュールの開放電圧分減圧された状態で印加される。
- ・ 絶縁抵抗を測定し、表 4-7 に示す判定基準を満たしているかを確認する。
- ・ 避雷素子を元の状態に戻す。

a) P 側印加の例

b) N 側印加の例

図 4-9 P-N 間を開放状態で実施する絶縁抵抗試験

電路の種類判定基準使用電圧が 300V 以対地電圧が 150V 以下のもの0.1M Ω 以上下の電路その他0.2M Ω 以上300V を超えるもの0.4M Ω 以上


表 4-7 絶縁抵抗測定判定基準 (電気設備技術基準 58 条)

b. P-N 間を短絡した状態で行う方法

P-N間を短絡することで、線間電圧を零にしてから絶縁抵抗を測定する試験方法である。P-N間に電位差がないため、この方法は、開放状態で実施する試験と比較して試験回数が半分で済むという利点があるが、P-N 間を短絡する回路の作成及び作業終了後の試験回路撤去などの試験条件作成が必要になる。なお、日中において一度短絡した回路を開放する際、交流用開閉器を使用すると短絡電流により図 4-10a)に示すようなアークが発生し、作業者が怪我をする危険性がある。したがって、図 4-10b)に示すように試験条件に合わせた直流用開閉器を選定しなければならず、かつ本ガイドラインは短絡された状態での絶縁検査は、夜間にのみ行い昼は実施しないことを推奨する。また、対象ストリング中に開放故障したバイパスダイオードが存在している場合は、太陽電池モジュールを損傷するリスクもあるため、この方法を選択する場合は夜間の実施を推奨する。具体的な作業手順は以下のとおりである。

- ・ 測定する太陽電池ストリングの開放電圧が 500V 未満の場合は 500V 絶縁抵抗計を,開放電圧 が 500V 以上の場合は 1000V 絶縁抵抗計を用意する。
- ・接続箱に避雷素子(SPD)が備えられている場合には、避雷素子の設置回路を開放する。
- ・ 短絡用開閉器をオフにし、短絡用開閉器一次側の P 側端子と N 側端子を,太陽電池ストリング のバイパスダイオードよりも太陽電池側と開閉器の間にそれぞれ接続する。
- ・接続後に短絡用開閉器をオンにする。
- ・ 短絡開閉器二次側を絶縁抵抗計の「LINE」側に、接地線側を絶縁抵抗計の「EARTH」側にそれぞれ接続する。
- ・ 絶縁抵抗計の電圧を印加して絶縁抵抗を測定し、表 4-7 に示す判定基準を満たしているかを確認する。
- ・ 必ず短絡用開閉器をオフにしてから、太陽電池ストリングの開閉器をオフにし、短絡用開閉器

- 一次側の接続を外す。この順序を誤るとアークが生じる危険がある。
- ・避雷素子を元の状態に戻す。

a) 交流用開閉器使用による短絡電流開放時のアーク

b) 短絡条件作成の例

図 4-10 P-N 間を短絡状態で実施する絶縁抵抗試験の留意点

なお、絶縁抵抗計を用いる場合には、そのプロービングの色と一般の電線の色とを混同しないよう注意する必要がある。具体的には、絶縁抵抗計の正極(黒プローブ)を接地極側に、負極(赤プローブ)をパワーライン側に接続する。また、絶縁抵抗計は本来負荷を対象にするものであり、それ自体が電源である太陽光発電設備の絶縁抵抗を測定すること念頭においたものではない。したがって、使用する絶縁抵抗計には、シンク動作が可能であり、ソース・シンクいずれの状態でも動作するカレントリミッタを内蔵しているものを選定する必要がある。シンク動作は、ストリング電圧が絶縁抵抗計の発生電圧を上回った場合に発生する可能性があり、その際の安全が確保されていないと、太陽電池ストリングからの電流によって絶縁抵抗計が破損し、作業者を負傷させる恐れがある。カレントリミッタは過電流による絶縁抵抗計の破損と作業者の怪我の防止のために必須である。

②自己バイアス方式(絶縁抵抗計によらない方法)

上記に対し、絶縁抵抗計ではなく、所定の受信抵抗を備えた電圧計を使用し、太陽電池ストリング自体が持っている電圧を利用して絶縁抵抗値を求める手法(「自己バイアス法式」)がある。この方法は、検出不感帯がなくかつ地絡を検出した場合には地絡箇所を特定できることができる。また、設備や作業者に対する危険が低いという利点もある。

以下に概要を記載する(詳細は参考文献 1 を参照されたい)。図 4-11 に示すとおり、太陽電池ストリングをアレイから切り離し、正極および負極を抵抗を介して接地したときの対地電位を測定する。正極測定時の状況を図 4-12 に、負極測定時の状況を図 4-13 に示した。また、太陽電池ストリングの極間電圧(Voc)を別途測定する。

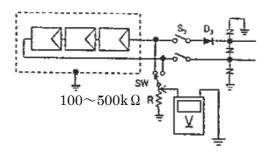


図 4-11 自己バイアス方式

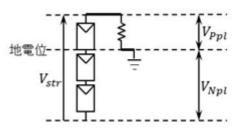


図 4-12 自己バイアス方式 における正極測定(Vp 測定)

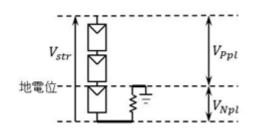


図 4-13 自己バイアス方式 における負極測定 (Vn 測定)

これらの結果と、接地に使用した抵抗の値(R)から、絶縁抵抗値 Rleak と地絡位置の負極からの位置を求めることができる。なお、対象とする太陽電池ストリングは、必ずしも開放状態である必要はない。具体的な計算式を以下に示す。この原理に基づく製品も市販されている(マルチ計測器製MSEI-100C)。

$$\begin{split} |Rleak| &= R \left[\frac{|Voc|}{|Vp| + |Vn|} - 1 \right] \approx R \left[\frac{|Vop|}{|Vopp| + |Vopn|} - 1 \right] \\ |Rleakpoint(from \ minus)| &= Voc \left[\frac{|Vn|}{|Vp| + |Vn|} \right] \approx Vop \left[\frac{|Vopn|}{|Vopp| + |Vopn|} \right] \end{split}$$

ここで、

♥ :ストリング発生電圧(**▼** または**▼** 。)

 $\mathbb{V}_{\mathbf{ppl}}$:ストリング正極側への加圧電圧(正極 SW 時は $\mathbb{V}_{\mathbf{pp}}$)

『ストリング負極側への加圧電圧(負極 SW 時は『aまたは』。

V_n :ストリング開放時に R を介して正極を接地したときの正極対地電位

√ :ストリング開放時にRを介して負極を接地したときの負極対地電位

🗽 :ストリング動作中の線間電圧

√ :ストリング動作中に R を介して正極を接地したときの正極対地電位

太陽電池ストリングをスイッチによって定期的かつ自動的に切り離して自己バイアス方式によって検査すれば、「検出不感帯が無い事」「頻繁に監視できること」「地絡検出と同時に地絡箇所を特定できること」を実現することができ、実際にそのような研究が実施されている(参考文献 2)。参考文献 1:吉富政宣、「太陽光発電システム向け各種絶縁抵抗測定法の得失検討ー適切な点検手順導出のための論点抽出」太陽エネルギー、Vol.40、No.3、pp.105-118、2014

参考文献 2: 石井ら「太陽光発電システムにおける直流地絡保護の検討(II)」(平成 25 年度日本太陽エネルギー学会/日本風力エネルギー学会合同研究発表会, 2013 年 11 月 28 日, 那覇市)

③専用の絶縁抵抗計による方法

一般社団法人日本電機工業会が作成した「小出力太陽光発電システムの保守・点検ガイドライン (JEM-TR228)」に絶縁抵抗測定方法として「P-N 間を開放した状態で行う方法」と「P-N 間を 短絡した状態で行う方法」の二種類を推奨していることを前述した。後者の方法は正確に測定できるが短絡時にアーク発生の危険性がある。発電していない夜間に測定すれば安全であるが、夜間に 限定されるので作業効率が悪くなる。前者の方法なら危険性は低いが経路の絶縁状態によっては正確に測定できない場合がある。絶縁抵抗測定に必要な測定電流と PV の発電電流が重畳するからである。

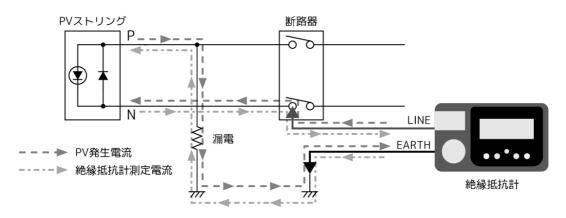


図 4-14 太陽電池回路専用絶縁抵抗測定装置

以上の問題を解決する PV 専用の絶縁抵抗計として、「P-N 間を開放した状態で行う方法」の製品も販売されている。この方法において、測定電圧印加前後にそれぞれ電流/電圧を測定、演算することで正確な絶縁抵抗値を測定することを可能にしている。

測定電圧印加前の電圧/電流測定は PV の発生電圧/電流を測定していることになる。測定電圧印加後の電圧/電流測定は、PV が発生した分と絶縁抵抗計が発生した電圧/電流が混在している。測定電圧印加前と印加後の測定値を演算して、PV 発生分を取り除くことにより正確な絶縁抵抗値を測定できる。PV の絶縁抵抗を測定するファンクション(以下 PV Ω モードと記載)を選べば、自動的に印加前後の電圧/電流を測定して演算し正確な絶縁抵抗値を表示する。PV Ω モードが付いていることが PV 専用の絶縁抵抗計と言われる所以である。

しかし、 $PV\Omega$ モードは PV システムから流れ込む電流を制限するための抵抗が挿入されるため、小さな絶縁抵抗を測定した場合は、抵抗値は正確に表示するが、測定物に設定した印加電圧が印加されない場合がある。また規定の電流が流せない等の理由で $PV\Omega$ モードは絶縁抵抗計の JIS 規格 C1302 には対応していない。JIS C1302 が PV に対応した測定方法を念頭に置いて規定されていないためで、今後の対応を待たなければならない。

ストリングの高圧化が進んでいるが、発電電圧 1000V が入力されても壊れない設計の製品もある。この耐電圧は点検者に機動性を与えている。

またメガソーラのような大規模発電の場合、ストリング数が膨大になる。1点あたりの測定時間が長ければ、システム全体の保守効率が格段に落ちる。よって、高速に測定できること、安定した測定値を得られること、簡単な操作であることは重要な要素である(例えば、現在最速の日置電機製 IR4053の測定にかかる時間は4秒である)。

図 4-15 PV 専用絶縁抵抗計の例(写真提供: HIOKI)

[4] 太陽電池モジュールの火災リスクを低減するためには、バイパス回路(BPR)の開放故障を未然に防ぐ必要があり、そのためには定期的にバイパス回路の健全性を確認する必要がある。ただし、現時点ではこれを簡便に実施することができる装置はない。しかし、電流ー電圧特性測定装置あるいは配線路探査器を応用的に利用すれば、BPRの状態を確認することはできる。以下にその具体的方法を記載する。

①電流-電圧特性測定装置を利用する方法(図 4-16)

太陽電池モジュールあるいは太陽電池ストリングの電流-電圧特性を測定する手法と、BPR の電流-電圧特性を測定する手法の二通りがある。どちらも太陽光発電設備が停止した状態で行うものである。

前者では、電流一電圧特性測定装置を用い、まず通常の手順で電流一電圧特性を測定する。次に、各クラスタ内の複数枚のセルをゴムシートなどで遮光した状態で電流一電圧特性を測定し、両者の測定結果と比較する。セルの遮光によってBPRが正常に動作している場合には、逆にセルストリングが動作しないため、当該クラスタ分の電圧が消失した電流一電圧特性曲線となるが、セルを遮光

した際に出力電流が大幅に低下する形状の電流-電圧特性が得られた場合には、遮光したクラスタの BPR が開放故障している。

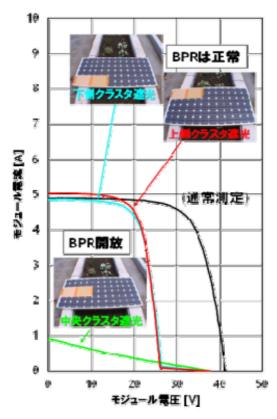


図 4-16 電流-電圧特性測定装置を用いた太陽電池モジュールの BPR 検査結果の一例

後者の場合には、一般に市販されている電流・電圧源や電流ー電圧測定装置を用い、太陽電池モジュールに対して、BPR の順バイアス方向、つまりモジュールの逆バイアス方向に電圧を印加する。すべての BPR が正常であれば、それらが動作するため数ボルト(5V以下)で数 A の電流が流れるが、一つでも BPR が開放故障している場合には印加電圧が 10 ボルト程度になっても流れる電流は1A に満たない。ただし、この手法はモジュールに光が入射していない夜間の場合にのみ容易に行うことができる手法である。

なお、昼間に本手法を可能とするための装置に関する研究が実施されている(浅井順:「オンサイトでのバイパス回路故障の検知方法」、日本太陽エネルギー学会太陽光発電部会第10回セミナー、 平成26年6月4日)。

②配線路探査器を利用する方法(図 4-17)

これも太陽光発電システムの運転を停止した状態で行う。この方法の基本手順は、太陽電池ストリングあるいはモジュールの両電極端に微小信号電流を送出する送信器を接続し、それが太陽電池ストリングあるいはモジュールの直流回路に発生させる誘導磁界を受信器に感知させるというものである。

まずはじめに、各クラスタのセルストリングが正常であることを確認するため、太陽電池モジュールに影がかかっていない状態で、受信器を各クラスタのセルストリングのインターコネクタ上に配置し、誘導磁界を感知することを確認する。

次に、BPR の動作を判定するため、対象クラスタのバイパスダイオードが動作する電圧のセル枚数をほぼ全面にわたって遮光し、セルストトリングのインターコネクタ上に配置した受信器が、誘導磁界を感知するか否かをみる。BPR が正常であれば、その動作により送信器の信号電流はセルストリングには流れず BPR 側に流れるため、受信器は誘導磁界を感知しない。しかし、BPR が開放故障している場合には、セル群の遮光によっても信号電流はセルストリングに流れ続けるため、セルストリング上の受信器は誘導磁界を感知する。この方法は、配線路探査器が比較的安価であること、昼間に実施できること、作業が天候に左右されないなどの利点があるが、受信器をセルストリング上に配置させる必要があるため、モジュールへの接近が免れないという欠点もある。なお、その欠点を解消するためこの機能を搭載した自動検査ロボットの開発が進められている。

参考文献: 山田昇ら: Prototype robotic crawler for on-site inspection of crystalline silicon photovoltaic modules, The 6th World Conference on Photovoltaic Energy Conversion, Kyoto, 2014

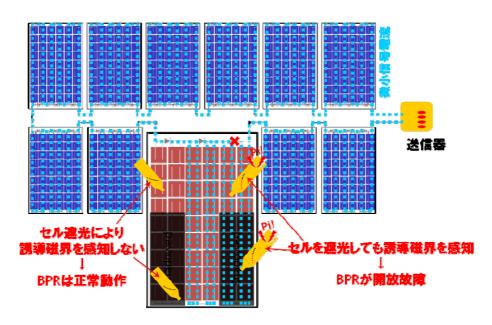


図 4-17 配線路探査器を応用した BPR の検査手法の概念図

参考文献: 山田昇ら: Prototype robotic crawler for on-site inspection of crystalline silicon photovoltaic modules,
The 6th World Conference on Photovoltaic Energy Conversion, Kyoto, 2014)

図 4-18 研究開発中の太陽電池モジュール検査ロボット

③その他-影の利用

比較的良い日射強度が得られている際の太陽光発電設備の運転中に、セルに意図的に影をかけることによって BPR が起動する環境を作り出し、BPD に通電した際の発熱を赤外線カメラにより観察することで BPR の動作を確認する方法がある。

まず影をかける前に、赤外線カメラによって太陽電池モジュールの端子箱を観察し、発熱していないことを確認する。このとき、モジュール裏面側から観察するのが最適であるが、表面側からでも観察は可能である。表面側から観察する場合は観察者等の影が観察に影響しないようにする。次に、クラスタごとにセル 2~3 枚程度をほぼ全面にわたって遮光し、再度端子箱の発熱の有無を確認するする。BPR が正常であれば端子箱内部の発熱が観察される。セルの遮光は原理的には1枚で十分であるが、逆バイアス電圧による負荷を分散するために複数枚を遮光したほうがよい。この方法は、太陽光発電設備の運転を停止する必要がないという利点はあるが、ある程度の日射強度と遮光や観察の為のモジュールへの接触や接近が要求される欠点がある。

参考文献:池田一昭:太陽光発電システムの直流電気事故対策-I(バイパス回路の点検),電気学会誌, Vol.134, No.10, pp.683-687, 2014

[5] 既存ガイドラインの中には逆流防止ダイオードの検査に関する記載が無い。しかし、施工エラー、 多点地絡等の原因によってあるストリングの電圧が低下している時に逆流防止ダイオードが短絡 故障すると、他のストリングからの電流が低電圧ストリングに逆流し、低電圧ストリングが逆方向 過電流によって焼損する恐れがある。しかし、太陽電池ストリングの並列数が小さく、逆方向過電 流によるストリング焼損の恐れが無い場合はこの懸念は無い。

使用しているモジュールの仕様にあるヒューズ定格を I_{fuse} , STC 条件での短絡電流を I_{sc} , ストリング数を n とすると、逆方向過電流によるストリング焼損の恐れが無い条件は、

$$I_{fuse} > I_{sc} \times 1.25 \times (n-1)$$
 $t \approx 5$, $n < 1 + I_{fuse} / (I_{sc} \times 1.25)$ $t \approx 5$.

この条件が満たされている場合は、逆流防止ダイオードが短絡故障していても、低電圧ストリング が逆方向過電流によって焼損する恐れは無い。従って、この場合には逆流防止ダイオードが短絡故 障しているか否かを点検する必要は無い。

また、もしモジュールの逆方向電流の許容値 Itor、が分かっていれば、上と同様に

$$n < 1 + I_{tor}/(I_{sc} \times 1.25)$$

である場合は、逆流防止ダイオードが短絡故障していても、低電圧ストリングが逆方向過電流に よって焼損する恐れは無い。従って、この場合にも逆流防止ダイオードが短絡故障しているか否 かを点検する必要は無い。

しかし、このどちらの条件も確認できない場合は、逆流防止ダイオードが短絡故障していると、低電圧ストリングが逆方向過電流によって焼損する恐れがあるため、逆流防止ダイオードが短絡故障していないことを確認する必要がある。必要な点検頻度に関する先行情報は見いだせないが、少なくとも定期点検の際と、落雷後には行うことが必要である。点検方法としては、接続箱内の全ての開閉器または断路器を開放して全ての太陽電池ストリングとの接続およびパワーコンディショナとの接続を遮断し、各ダイオードが機能していることを確認すれば良い。

簡易な検査はテスタに付属しているダイオードチェック機能で行えるが、この方法では、逆耐 圧が十分であることを確認できない。そこで、メガーを用いてシステム電圧以内の電圧を順方向 に印加したとき通電すれば正常、逆方向に印加した時データシートにあるスペック以下の漏れ電 流であることが確認できれば、正常と判定する方法が考えられる。この方法では逆方向印加時に、 検査対象ダイオードを過電圧によって破壊しないための配慮が必要である。すなわち、メガーが 発生する電圧は、設定値の1.3倍に及ぶ場合があることに留意しなければならない。たとえば、 耐電圧 600V のダイオードを,500V でメガリングすると,実際には500V×1.3=650V が印加さ れる可能性があることから、ダイオードを破損する恐れがある。この場合は、250V でメガリン グすることで、その危険を回避できる。また、メガーが瞬間的な過電圧を発生することでダイオ ードを破損する恐れもある。これを防ぐためには、検査対象ダイオードにコンデンサを並列接続 することが考えられる。ただし、メガーの電流供給能力は限られているので、静電容量が大きい コンデンサを使用すると、検査に要する時間が長くなる。たとえば、電流供給能力 1mA の 500V メーガーを使用して、実際には 650V を印加する際に、 10μ F のコンデンサを並列接続した場合 の測定時間は、最低でも6.5秒であり、この時間はコンデンサの静電容量に比例して長くなる。 この他,発生電圧が数十Vに限られている, $4\sim 20$ mAの信号発生器を使用し,逆流防止ダイオ ードに逆方向電流の通電を試行し、通電してしまえば短絡故障、通電しなければ正常とみなす簡 便法も考えられる。この方法は、「ダイオードが静電気による過電圧等によって劣化した場合に は、完全な短絡故障に至っていなくても、逆耐圧が著しく低下する」という報告(参考文献 1)に 基づいている。しかしそれもダイオードを取り外しできる場合の話である。ダイオードがファス トン端子等、挿抜回数に制限のある電気接続具にて回路へと繋がれている場合、無暗なとりはず しは、接触不良を招くため望ましくない。量産品の多くは現状、点検作業が考慮されていないの で, 点検を要するシステムには, ダイオードの着脱容易性を確保する必要がある。同様のことは, SPD についても言える。

【紹介事項】

- [18] 50kW 以上の太陽光発電設備の運用において、「電気関係報告規則」(省令)で定められた事故が発生した場合、この規則が定める報告先に報告することが求められている。
- [1] 法令が求めている手続きを紹介する。これらは、行政上の必要事項のため義務事項であるが、安全 対策そのものではないため「紹介」とした。「電気関係報告規則」(省令)では、自家用電気工作物 に以下の事故が発生した場合、その設置場所を管轄する産業保安監督部長への報告を定めている (電気関係報告規則第3条第2項)。
 - (1) 感電又は破損事故若しくは電気工作物の誤操作若しくは電気工作物を操作しないことにより人が死傷した事故(死亡又は病院若しくは診療所に治療のため入院した場合に限る)。
 - (2)電気火災事故(工作物にあっては、その半焼以上場合に限る)。
 - (3)破損事故又は電気工作物の誤操作若しくは電気工作物を操作しないことにより、公共の財産に被害を与え、道路、公園、学校その他の公共の用に供する施設若しくは工作物の使用を不可能にさせた事故又は社会的に影響を及ぼした事故。
 - (4)主要電気工作物の破損事故。

このうち(4)に関しては、太陽光発電設備の場合は「出力 500kW 以上の太陽電池発電所」が該当する。また、太陽光発電設備の「主要電気工作物」は同規則第1条第2項第1号ホに定められており、具体的には「太陽電池(出力 500kW 以上のものに限る)、変圧器、負荷時電圧調整器、負荷時電圧位相調整器、調相機、電力用コンデンサ、分路リアクトル、限流リアクトル、周波数変換機器、整流機器、遮断器及び逆変換装置(容量 500kVA 以上のものに限る)」である。

なお、この中には接続箱が含まれていないが、接続箱は大きな直流電気エネルギーが集約されかつ電気的接続部が密集した機器であるため本質的に電気事故のリスクが高く、また、これまでに発生した太陽光発電設備の火災事故も接続箱での事例が多いことから、太陽光発電設備の安全性の向上のためには、本規則における太陽光発電設備の主要電気工作物に接続箱を含めることも検討する必要がある。

【参考1】太陽光発電設備に利用する計測機器の注意事項

太陽光発電設備の竣工検査、定期点検など、電圧、電流を測定する機会がある。測定時における作業者の感電や測定器を通した短絡事故を防ぐために、利用する計測器は、安全規格(IEC61010 シリーズ)における電気測定器の使用区分に準拠した測定器を利用する必要がある。

測定器を安全に使用するため、IEC61010では測定カテゴリ(CAT)として、測定箇所の電圧、短絡したときに流れる電流レベル、電圧に重畳する過渡過電圧などに基いてCATII~CATIVで分類している。また、汚染度と動作電圧により機器内部の空間距離と沿面距離が明確に規定されている。

CATII: コンセントに直接接続する機器の電源プラグから機器の電源回路まで

例: 家電製品の主電源回路、コンセント

CATⅢ:分電盤から直接電力を取り込む機器(固定設備)の電源配線と電源回路、および分電盤からコンセントの裏側の配線端子までの配電路

例:配電盤、回路遮断器、配線、ケーブル、バスバー、永続接続する産業用機器、据え付けのモータ

CATIV:建造物への引込み電路、引込み口から電力量メータおよび分電盤までの電路

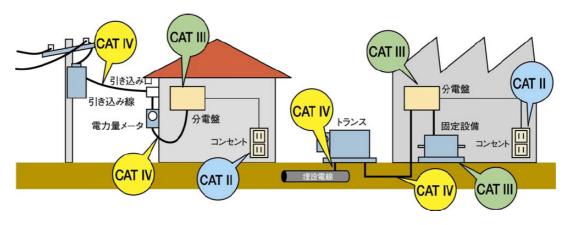


図 4-19 CAT カテゴリ

数値の大きいカテゴリは、より高い瞬時エネルギーのある電気環境を示している。そのため、CATⅢで設計された測定器は、CATⅡで設計されたものより高い瞬時的エネルギーに耐えることができる。カテゴリの数値の小さいクラスの製品で、数値の大きいクラスに該当する場所で測定すると重大な事故につながる恐れがあるので、絶対避けること。

太陽光発電システムの場合、接続形態により CATIII または CATIV になる。低圧連系(高圧受電設備の2次側の低圧回路で連系しているシステムも含む)の場合、CATIII である。太陽光発電システムは分電盤に永続接続した機器として考える。高圧連系または特別高圧連系の場合、高圧配電線と売電電力量計、VCT、昇圧設備を介してパワコンの1次側に接続する。よってパワコンの1次側は CATIV である。パワコンの中にはサージアブソーバなどの雷保護があり、過渡過電圧を吸収するので、パワコンの2次側、接続箱、パネルは CATIII である。

独立系太陽光発電システムは商用電力システムとは分離されていますので、測定カテゴリは「なし」である。このシステムを測定するには、全ての測定カテゴリの測定器を使用できる。

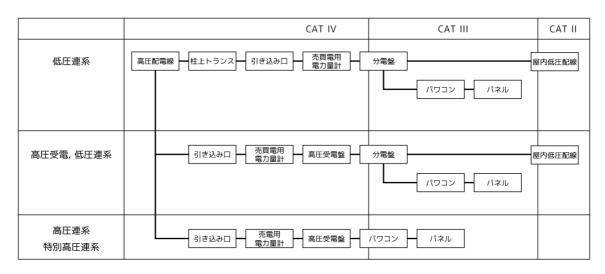


図 4-20 太陽光発電における CAT カテゴリ

テストリードの安全規格 IEC61010-031 について紹介する。従来テストリードは先端露出金属部が長く、測定時の短絡の原因にもなっていた。例えばブスバーの電圧測定するとき、露出金属部は短絡するだけの十分な長さであった。新しいテストリードの規格では、CATIII、CATIV 用の露出金属部を 4mm 以下と規定された。下図のようにテストリードに樹脂製のキャップを付けて CATIII、CATIV の測定場所を測定し、キャップを外して CATII の場所を測定する。ワニロクリップなどのプローブも同様に露出金属部が少なくなる構造に変更されている。

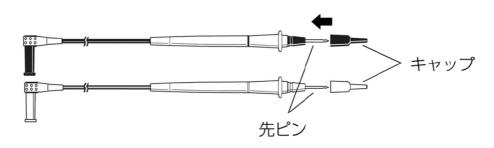


図 4-21 充電部について

また、リードの部分も改良が加えられている。従来は1重被覆であった。もしテストリードの被覆が擦れて金属線が見えていたら、非常に危険である。被覆が破れていることを確認することもむつかしかった。それを確認するため、または視認性をよくするために下図のように2重被覆になっている。外側の被覆が摩耗して破れても第2の白色被覆が出てくる。よって測定器を使用する前にリードが白くなっていないか確認することにより健全性を確認できる。白色被覆が見えているときは、そのテストリードは使用してはならない。

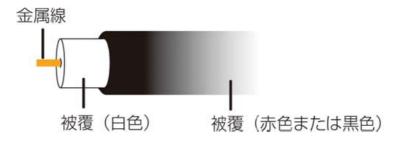


図 4-22 テストリードの被覆について

テストリードを使用するとき、規格で決められた安全距離を確保するために先端にバリアが付いている。 測定カテゴリと動作電圧により先端露出金属部からの距離が異なる。バリアより先端側を持って測定す ることは危険である。

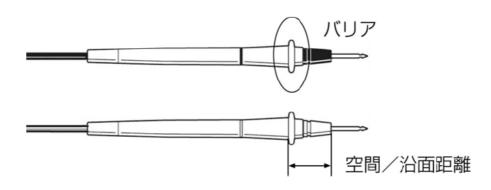


図 4-23 テストリードについて

また、以下について確認すること。

- ・充電部が露出しない構造であるか確認すること。
- ・テストリードが抜けてもプラグ部の金属が露出しない構造になっていること。
- ・端子金具に指等が触れない構造になっていること。
- ・テストリードに適切なバリアが設けられているか確認すること。
- ・テストリードに使用時の安全距離を確認するためのバリアが付いていること。
- ・バリア位置は、測定カテゴリと動作電圧により先端金属部分からの距離(空間・沿面距離)が異なる。 CAT II 600V よりも CAT III 600V の方が距離が長くなる。

参考文献: HIOKI ユーザーズガイド, "安全なテスタを選びましょう!", 2010

IEC61010-1 Safety requirements for electrical equipment for measurement, Control, and

Laboratory Use; Part1: General Requirement

JIS C1010-1:1998「測定、制御および研究室用電気機器の安全性 第1部:一般要求事項」

付録A 直流電気安全性に関連する構造設計

構造の事故は、直流電気事故に直結する。そのため、構造設計は直流電気安全の設計を考えるうえで 最重要な事項である。本来であれば、本項目の内容・記述を充実させ、「第 2 章 設計組合せ編」の一 部とすることが必要である。しかしながら、構造設計の全体は、本書で扱うには体系も分量も膨大とな る。そのため、本書は直流電気安全性に関連する構造設計の主要な部分だけ記述し、付録とした。設計 上重要であるが本項を付録とした理由は、本書に記述された内容だけが構造設計のすべてであるとの誤 解を防止するためである。読者は、本書に記述された項目のみでは構造設計は完成しないことに留意さ れたい。また読者は、構造設計の項目が付録にあるために優先順位が低いと勘違いせず、構造設計は直 流電気安全の設計のひとつであることを忘れないで頂きたい。

付録 A.1 共通事項

【目的】飛散、圧潰、倒壊による直流事故を未然防止すること。

【設計指針】

[16] 太陽電池モジュールおよび太陽電池アレイには、荷重計算および構造計算によって、少なくとも建築基準法および電気設備技術基準、消防関係法令に定められた最低基準以上の強度を与えること。

【設計指針 解説】

「風荷重」「積雪荷重」「地震力」によってモジュールまたはアレイが崩壊すると、多くの場合太陽電池アレイが地絡する。このとき感電・火災を併発する恐れがある。このような事故は設計段階から未然防止される必要がある。しかし本 GL は、構造安定の GL ではない。そこで本節では、構造安定策のうち、配慮を怠ると即火災や感電につながる事柄のみを列記する。

[1] 上記の規定は、系統連系システムや蓄電池を用いた独立型システムなど火災の恐れのある全てのシステムに適用される。

①特別法と一般法,義務と義務主体に関する考え方

法律上,このような事故は,事前的には技術系の法令(建基法・電事法・消防関係法令)および商法における消費者保護法などの特別法に基づく行政的統制が行われており,事後的には契約法における債務不履行や瑕疵担保責任,不法行為法における工作物責任(民法第717条)に基づく司法的統制が行われている。

法遵守義務の主体は、一義的には所有者である。しかし、専門家と素人との間には情報の非対称性(情報の質及び量並びに交渉力の格差、消費者契約法第一条参照)があり、発注者や所有者が法律の目的とその内容を理解しているとは限らない。また、設定された荷重レベルと被害レベルの関係は、広く知られてはいるとは言えない。すると、専門家である製造業者および設置業者が基規準の意味をよく理解し、発注者や所有者に対し遵守を促す必要がある。また、この際には、特別法における要求が「最低基準」であり、行政審査、行政罰の判断基準に過ぎないこと、それらは行政から

の最低限の要求に過ぎず、刑事、民事罰はこの範疇を超えて広く存在することを伝える必要がある。

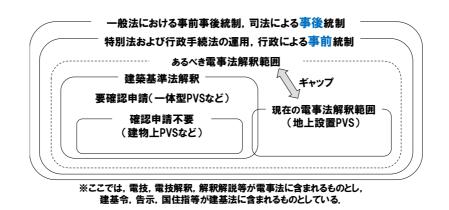


図 A.1-1 各種ルールの包含関係

②特別法における義務の概要

建物上アレイは、建築基準法および電技の二重規制下にある。規制は電技のみであるものと誤解されることが多くなっているが、建築基準法における確認申請が不要であることは、建築基準法による規制不存在と同じではない。技術上は、建築基準法における技術規定を満足する必要がある(平成 24 年 7 月 4 日国住指 1152 号)

1 建築物の屋上に当該建築物に電気を供給するために設置する太陽電池発電設備については、法第2条第3号に規定する建築設備に該当し、設置後の建築物(当該太陽電池発電設備を含む。)は建築基準関係規定に適合する必要がある。

2 建築物の屋上に架台を取り付け、その上に設置する太陽電池発電設備のうち、太陽電池発電設備自体のメンテナンスを除いて架台下の空間に人が立ち入らないものであって、かつ、架台下の空間を居住、執務、作業、集会、娯楽、物品の保管又は格納その他の屋内的用途に供しないものについては、法第2条第5号に規定する主要構造部に該当せず、また、既存建築物の屋上に架台を取り付け、その上に太陽電池発電設備を設置する行為は、法第2条第13号に規定する増築には該当しないため、法第87条の2に規定する場合を除き、当該行為に当たって建築確認は不要である。

③機能限界,損傷限界,安全限界

太陽光発電システムの電気的・構造的加害性からは、三限界によって区分される四状態を念頭に置き、稀な強風、稀な豪雪、稀な地震に対しては損傷限界を超過しないよう、極稀強風、極稀豪雪、極稀地震に対しては安全限界を超過しないよう設計を進める必要がある。

機能限界(使用限界) 損傷限界(修復限界) 安全限界

使用可能状態	修復可能状態	修復不可能状態	不安全状態
使用性が保たれている.	使用性が棄損され ているものの,修 復によって当初の 状態に回復可能.	当初の状態に戻れないものの, 安全性は保たれている.	安全性が損なわれている.

図 A.1-2 3 限界と 4 状態

他方,個々の太陽光発電システムの機能は、防災設備駆動,非常用発電,売電などの様々な目的に 応じて様々な姿で規定されており、その機能限界は、約定に支配されていると言える。

中でも最近出現した事業用の地上設置太陽光発電システムには、売電性能という最小仕様が要求される傾向が強く、法規=財産処分権の制約原理=過剰規制と受け止められることが多かった。また、元来発電所である地上太陽光発電システムは、電技解釈 38 条の法的制御によって柵や塀を備えることで敷地の独立性が高められている。そのようなシステムでは、強風による飛散や地震による倒壊炎上を生じてもその損害は投機家の個人的損失に留まるかもしれない。これらの太陽光発電システムは建築基準法から適用除外されたことには、このような理由があると推察される。

ただしその結果、安全限界は著しく身近になった。建築基準法の最低水準においてすら 20 年間 の運用中に 33%も設計荷重を超過する確率がある。安全性はもとより経済性の観点からしても、本 書に示す指針より破壊確率が高くなる緩和荷重を太陽光発電システムにそのまま適用することは、 好ましくない。

④外力算定に関する留意点

太陽光発電システムの構造安定性は、太平洋岸の大規模普及地域では風荷重により、内陸においては雪荷重により支配されている。その風荷重算定において、法解釈、工学的判断の誤りが多くなっている。建物上太陽光発電システムは、その出現時から既に建築基準法の範疇にあり、一体型は、平成12年建設省告示第1458号の範疇にある。平成23年から、諸要件を満たす地上設置アレイのみが建築基準法から除外された。そのようなアレイ形式として、営農型を含む地上設置太陽光発電システムうち、告示4936号および国土交通省建築確認手続き等の運用改善(第二弾)の例外処理に抵触しないシステムが挙げられる。建基除外規定を満足しかつJISC8955 (2004, 2011) に適合したアレイは、少なくとも特別法諸法に適合している場合がある(一般法への適合性も検討される必要がある)。

また、本編では風荷重、積雪荷重、地震荷重しか取り上げなかったが、太陽光発電システムに加わる荷重には、この他、固定荷重(自重)、温度荷重に加えて衝撃荷重がある。なお、建物上の太陽光発電システムに関する風力係数は JISC8955 で規定されており、多くの太陽光発電システムでは JIS を参照して荷重設定が行われている。ただし、現在の JIS で設定されている風力係数は適切でない点があるため、委員会で改正の審議が進められている。

⑤クライテリアの原則と要点

判断基準は、特別法や一般法によって明確に与えられている場合(完全義務規定)とそうでない場

合(不完全義務規定)とがある。また、外力と耐力は、確定論的ではなく確率的であるため、特別 法において規約的定義(生起不生起確率が一意に定まらないことや生起不生起確率が一定でない事 柄に対する約束事、法律でいうところのみなし規定)が行われていることが多い。特別法における 外力規定と耐力規定の要点は、下表にまとめられる(例外的な緩和処理は各緩和規定に拠ること)。

外力規定の要点

	風荷重	積雪荷重	地震荷重	
機能限界	任意規定であり、一般法においては、当事者間で定められることとなっている。(習慣的に			
IEC61215 や製造者マニュアルなどがその約定(任意規定)に採用されることが				
		告示 1455 号	局部震度法におけるクラス A, クラス B。	
損傷限界	告示 1458 号			
	損傷限界値×1.6 倍	損傷限界値×1.4倍	局部震度法ではクラス A, 非常用機能を持た	
安全限界			ない場合において S, 建物側動的解析を入力	
			に用いるときは, 建築士の指示による。	

耐力規定の要点

	架台は、外装材型であるとは限らず構造骨組型であることもある。
	Nation / And Company / maintain to a c c ow so
構造骨組型 架台	構造骨組型については、許容応力度設計法に対応する構法。損傷限界荷重を与えたときの材料 応答が「応力度<許容応力度」であることをもって、当該アセンブリは安全限界内にあるもの

⑥試験およびクライテリアに2つのルートがあることについて。

架台には、許容応力度法による耐力算定可能な構法とそうでない構法とが存在する。前者は、熱間 圧延鋼など非二次部材もしくは JIS 冷間圧延鋼などの材料から成る伝統的構法を指す。後者は、前 者以外を指し、製造者独自の断面をもった冷間圧延鋼、アルミニウムなど、有限要素法解析もしく は終局耐力試験によってのみ強度が確かめられるものが挙げられる。終局耐力試験の「終局」とは、 直接的に電気事故または構造事故に至る破壊モードを指す。例えば、発電面のガラス割れ、それ自 体を終局とは言い切れない。本節構造的な観点では、ガラスが割れたうえさらに地絡する、発電面 がフレームから脱落するといった二次被害を生じうる状態を終局と定義する。ただし、ガラス割れ 即アークである場合も大いに考えられる。即ち、終局は、電気的観点と構造的観点の論理和であり、 システムを構成する他要素との関係で定まる。

(7)タワミ

タワミは、建築基準法、鋼板製屋根構法標準(SSR2007)等の二次部材のクライテリアに準拠すると良い。タワミを基準値以下とすることで有害な変形は回避されると判断できる。有害な変形には、

架台と屋根材との反復衝突、モジュール裏面の架台への地絡等が挙げられる。

⑧安全率

モジュールや薄鋼板製架台など、伝統的許容応力度法設計に適さない材料については、生じうる最大の荷重(500年再現期間)に対して有害な変形(小パーツでは脱落、アセンブリでは倒壊)を生じないことが、設計解として妥当とみなされる。

これは、許容応力度法が、終局耐力に対して 1.5 倍の内包安全率を有することに拠り根拠づけられている。即ち、①長短期に基づく 1.5 倍論(もしくは引張強度短期に基づく 400/235=1.7 倍論)は、「内力論」を起点とする仕様規定論に由来し、②1.6 倍&1.4 倍論は、「外力論」を起点とする性能規定論(たとえば限界耐力計算)に由来している。

<モジュール>

建築基準法 20 条および改正建基令施行規則第一条の 3 により、モジュールの耐力は、「終局耐力> 設計荷重」である必要がある。終局耐力の目安は、建基法における風荷重×1.6 倍、積雪荷重×1.4 倍に対して、飛散、圧潰、地絡など有害な損傷を生じないことである。

<架台>

軽鋼構造に係る諸指針にて材料応答が明確化されている一部の薄鋼板断面,および熱間圧延鋼から成る架台は,従来通り許容応力度設計のクライテリアによる。他方,伝統的許容応力度法の適用範囲を超える可能性があると考えられている架台(一部薄鋼板,一部木材,FRP)には特別な配慮が求められる。たとえば、損傷限界は、損傷限界荷重と設計荷重(損傷限界に対する荷重)との比が安全率と解釈される。同様に安全限界は、終局耐力と設計荷重との比で定義される。この「安全率」は、設計で想定していないような状況、設計荷重の定め方(極値の平均値を用いた場合、それを超える確率は50%ある)、部材・接合部・構造物の耐力のばらつき、構造計算や試験の不確定性などを考慮して設定する。安全率は、ばらつきや不確定性が大きければ大きな値が必要である。太陽光発電システムのみならず建築外装システムは構造計算にのりにくいので、アセンブリ試験体を用いた試験で終局耐力を求め、その1/5~1/3を許容耐力とするのが一般的となっている。外装材はさまざまな部材で構成されているので、不確定性も大きく、安全率として2~3程度の比較的大きな値が推奨される。

⑨その他の考慮事項

単に IEC 規格をパスしただけのモジュールは、国内の過半の地域において現実の積雪荷重または風荷重に対応しておらず、国内の一部の環境にしか設置できない。ただし 2400Pa 以下の外力のもとでは、IEC 仕様のモジュールを採用することができる。

地上設置太陽光発電システムでは、塩害防止の観点から架台材料に木材や FRP などの可燃性素材を用いることが望まれており、電技上も容認される場合がある。しかし、これらの素材は従来の鉄材やアルミ材に比べ防火にとって望ましくないのは明らかであるから、サイト毎に適切な防火策が講じられる必要がある。

発電所である地上設置アレイについては、第三者への加害性を増大させない範囲で、約定による 緩和が可能な要素がある。これらのシステムでは、建物との共振による居住性を考慮する必要が無 くなるためタワミを厳密に管理する必要はないかもしれない。

また、架台層間変形角に制限を設ける必然性も薄いかもしれない。他方、現実には、座屈事故や 曲げモーメント超過によるアレイ倒壊と地絡など、無設計による被害が目立っている。重大事故の 多くは、無設計と現場合わせによるものであるが、荷重要素の見落としによる事故もまた少なくはない。また、鉄道・道路等のインフラや住宅地に近接した太陽電池アレイについては、それがたとえ営農型や事業用の地上設置型アレイといえども、建築基準法に準拠した強度を与えることが不法行為法上、当然に求められる。設計にあたっては、アレイに対し、建築本体および他の建築設備と同等以上の感電防止レベル、防火レベルを与えることを具体的な目標とする。

感電・火災とその拡大損害の程度は、アレイの設置形態(地上、建物付属、建物一体)や設置地域の特性(都鄙、インフラ近接性)によって大きく異なるため一律に見積もることが出来ない。しかし、法の本旨から言って鉄道・道路等のインフラや近隣住民への加害防止のため、これらに近接するシステムでは安全レベルを上げる必要がある。

太陽光発電システムへの風荷重の知見は大幅に改められつつある。その成果は、JISC8955 委員会、および、日本風工学会太陽光発電システム風荷重評価研究会にてまとめられようとしている。現実の安全確保のためには、(特別法の規定に関わらず)これら最新の知見を活用してゆく必要がある。

参考文献

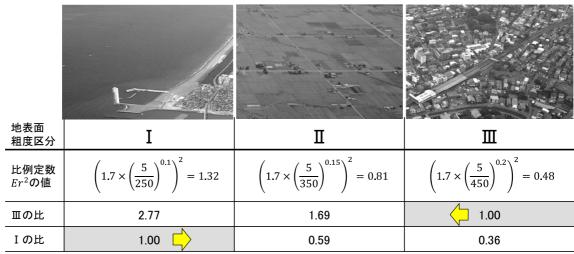
- 1) 田村幸雄: 法の定めるべき最低基準,最低基準に関する WG 報告書,pp33-37,日本建築学会構造委員会荷重運営委員会,(Mar。 2007)
- 2) 喜々津仁蜜:外装材等の耐風性能の検証方法,建築技術 2012。12,pp89-95
- 3) 植松康: 地上設置型太陽光発電システムの設計用風荷重, JSES (2014)

付録 A.2 風荷重算定·耐力設計

【目的】飛散,圧潰,倒壊による直流事故を未然防止すること。

【設計指針】

荷重算定方法


- [1] 風力係数は、風洞実験によって求めることを原則とし、予定する設置形態に当てはまる先行 風洞実験がある場合は、その値を用いること。
- [2] 地表面粗度は、現地の環境に即した粗度を前提に選択すること。
- [3] 荷重算定は、構造モデルに応じた計算を行うこと。

耐力算定方法

[4] 耐力算定方法は、荷重伝達経路を完成させるとともに、抵抗モーメント>転倒モーメントと すること。

【設計指針 解説】

- [1] 風力係数は、具体的には、日本風工学会、日本建築学会、JISC8955の実験データに基づく係数の活用が挙げられる。また、諸外国における実験データを ISO4354 により我が国の風荷重算定式に妥当するデータに変換した上でそれらの実験データを用いることもこれに相当する。参考文献を列挙。
- [2] 地表面粗度は、建築物荷重指針(1993、2004)によると、地表面はその凸凹状態毎に滑らかな I ~より粗いIIIに区分され、より強い風荷重を生じる順に I (海岸・湖岸)、II (田園)、III (都市部) となっている。他方、特別法の上では、法運用の便宜上、都市計画法による地表面粗度区分が行われたため、II 地域をIII 地域と見做しても構わないケースを生じている。これは、地表面粗度区分をはじめて取り入れた改正建基法(平成 12 年)が、法的連続性の維持および地表面粗度区分の曖昧さを回避することを志向したことによる。電技から参照される JISC8955(2004、2011)もこの法改正の影響を受けている。結果、特別法の記載に従うと危険側評価となる場合がある。例えば、地上設置太陽光発電システムは、周囲の開けた地形である I 地域やII 地域に設置されることが多いが、実態的にはII 地域に相当する場所に設置されるシステムをIII 地域として評価すると、II 地域で計算した強度の 59%となってしまう。したがって、そのような地上設置システムは、実況に応じ、I やII 地域の風荷重を前提する必要がある。

写真は、建築物荷重指針 6.1一般 6.1.1適用範囲 P.325

図 A.2-1 地表面粗度区分の違いから生じる風荷重の違い

[3] 太陽電池モジュール、架台に加わる風荷重はそれぞれ異なり、法律的な取り扱いも異なる。構造モデルには、「構造骨組型」と「外装材型」がある。構造骨組と外装材は適切に峻別され、そそれぞれの構造モデルを適用される必要がある。太陽電池モジュールは外装材として取り扱われる。架台には、構造骨組型と外装材型とがある。

「構造骨組」は隣接する他部材への応力分配可能な形式であり、荷重を大面積が引き受け大面積で一体として振る舞うことを主な特徴とし、副次的には、連続体的・並列的・不静定であるなど冗長性を有することが多い。「外装材」は、全荷重を小面積部材が引き受ける形式であり、荷重を小面積が引き受けることを主な特徴とし、副次的には、連結体的・直列的・静定であるなど冗長性を有しないことが多い。

- ①太陽電池モジュールは、告示 1458 号に基づいた風荷重算定が行われるものとする。
- ②架台は、外装材型では、告示 1458 号に基づいた外装材用風荷重が行われるものとし、構造骨組型では、告示 1454 号や JISC8955 (2004, 2011) による構造骨組用風荷重が行われるものとする。設計用風荷重は一般に、外装材型>構造骨組型となる。したがって、外装材型、構造骨組型のいずれであるかが不分明の場合は、安全側となる外装材用算定式に拠らなければならない。構造骨組と外装材の違いとおよび、両者の分別例を以下に示す。

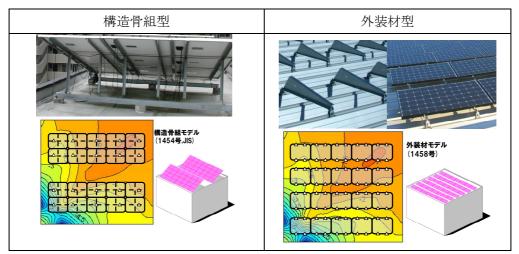


図 A.2-2 構造モデルの違い (構造骨組型と外装材型)

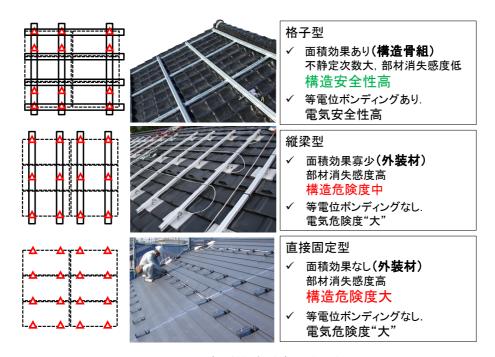


図 A.2-3 各種構造形式の分別例

[4] 架台本体強度と接合部強度とは無関係である。構造事故を契機とする電気事故を防止するためにも、アレイから大地までの荷重伝達経路(ロードパス)は、都度検証される必要がある。

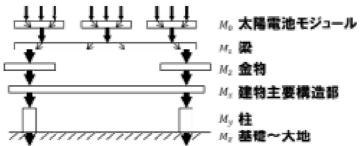


図 A.2-4 荷重伝達経路未完成により、突風を機に屋根ごと引き剥がされた事例 (写真,長野日報)

抵抗モーメント>転倒モーメントは、下式にて検証される。

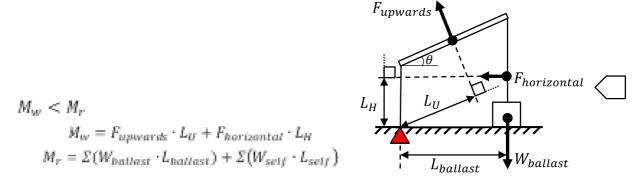


図 A.2-5X 転倒モーメントの算定

付録 A.3 積雪荷重算定·耐力設計

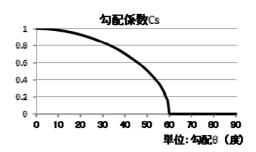
【目的】飛散,圧潰,倒壊による直流事故を未然防止すること。

【設計指針】

荷重算定方法

- [1] 積雪荷重算定に当たっては、建物圧潰やアレイ圧潰につながる偏積雪を防ぐようモジュール・アレイ配置計画を行うとともに、特別法諸法および荷重実態のうち、いずれか大きいほうに基づくこと。ただし、アレイ冠雪の落雪が保証される場合、荷重低減係数(建基法においては ルン、JISC8955における Cs)を適用することが出来る。また、雪おろしの慣習のある地方に許容された荷重低減を行う場合、必要な事項の表示を行うこと。
- [2] sin 荷重,沈降圧,側圧など特別法に記載がない荷重の想定に当たっては,実験によるか建築物荷重指針や学会論文等,適切な技術資料の勧めに従うこと。
- [3] 雪止めの設置是非判定および設置方法については、各自治体の条例に準拠すること。 雪止めに関する条例が存在しない地域では、落雪加害がある場合とそうでない場合とで、設置の 是非を峻別する必要がある。雪おろしの習慣がない寡雪地域において落雪加害の恐れがある場合 は、屋根に雪止めを設置するものとし、豪雪法に指定された地域もしくはこれに類する地方では、 実害を考慮するとともに地域慣習に従うこと。

【設計指針 解説】


[1] 荷重低減係数 🕻 とは、建基令第86条第四項に記載された荷重割引係数 👢 を指す。

建基令第86条第四項

4 屋根に雪止めがある場合を除き、その勾配が 60 度以下の場合においては、その勾配に応じて第一項の積雪荷重 に次の式によって計算した屋根形状係数を乗じた数値としその勾配が 60 度を超える場合においては、零とすること

この式において、 μ_b 及び β は、それぞれ次の数値を表すものとする。

 μ_b 屋根形状係数 β 屋根勾配(単位 度)

Cs は戦時物資不足の名残であり、法改正が手つかずのままとなっている。Cs の起源は以下である。

昭和19年 臨時日本基準規格第532号(下線筆者)

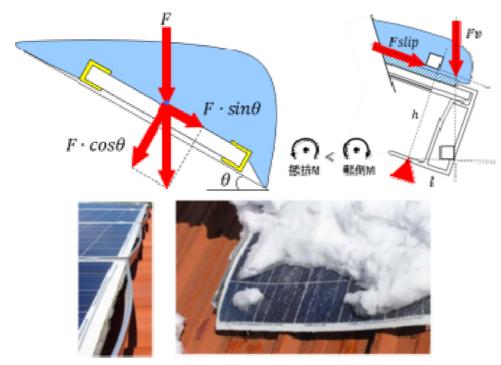
第1条 本規格は、戦時下建築せらるる一般建築物の強度計算につき、主要資材の節約を得る目的を持って採用すべき荷重を制定したるものとす。

国土交通省建築物構造関係規準技術解説 pp241 においても、Cs の適用限界は明らかにされている。同解説によると、Cs の採用には、以下二条件を満たす必要がある。

- (1) 雪止めが無く、積雪底面と屋根材が凍着せず滑動を生じること。
- (2) 積極的な小屋裏の暖房により滑動を保証すること。

国土交通省建築物構造関係規準技術解説 pp241 (下線は起草者)

(4) 屋根上の積雪は、外気温が低く屋根ふき材の表面と積雪の底部との接触面が氷結している場合には滑落を生じないが、<u>雪止めがなく積雪底面が氷結していない場合には滑落が生じる。</u>(令86条)第四項は、この滑落による積雪荷重の減少を勘案した規定であり(中略)、

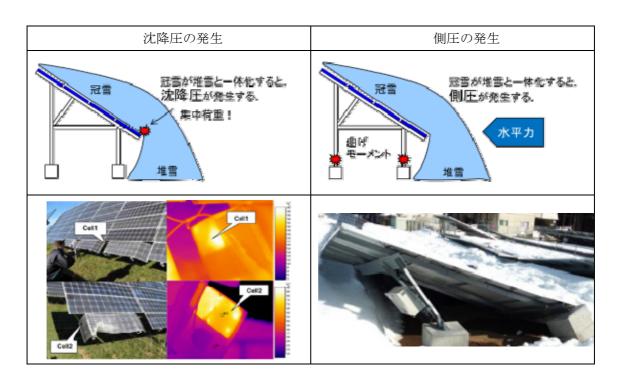

屋根勾配による低減係数を採用するに当たっては、<u>積極的に小屋裏を暖房するなどの方法により積雪の滑落を確実</u> に保証することについての配慮が必要である。

したがって、冠雪と堆雪が結合する低背の地上設置アレイや陸屋根アレイに対し、Cs を適用することは不適当となる。他方、落雪が保証された傾斜屋根アレイでは、雪止めが存在しないことを条件に Cs を適用することが許容される場合がある。

また、雪おろしの習慣のある地方に許容された荷重低減を行う場合、建基規制の適用範囲か否かを問わず、建築基準法87条第7項に基づく必要がある。これは現実の安全のことはもちろん「知りながら告げない」ことによって生じる民事的な紛糾を予め回避するためでもある。

建築基準法87条第7項

- 6 雪下ろしを行う習慣がある地方においては、その地方における垂直積雪量が1m を超える場合においても、積雪荷重は、雪下ろしの実況に応じて垂直積雪量を1m まで減らして計算することができる。
- 7 前項の規定により垂直積雪量を減らして積雪荷重を計算した建築物については、その出入口、主要な居室又はその他の見やすい場所に、その軽減の実況その他必要な事項を表示しなければならない。
- [2] モジュール下框にはしばしば、氷板の滑動による sin 荷重とモーメントとを生じる。雪解け後に顕著 化する地絡事故などの拡大損害を防ぐには、予め sin 荷重に対するモジュールの終局耐力を調べて おく必要がある。


図A.3-1 Sin 荷重によるモジュール破壊例

認証機関によっては sin 荷重による破壊形態およびその時の終局耐力値を調べるサービスが存在するので是非これらを活用されたい。

ブロックによる sin 加力 破壊時の状態 (終局耐力と規定される 図 A.3-2 sin 荷重による破壊例 (出典 TUV ラインランド)

沈降圧と側圧のメカニズム解明は遅れており定量化も困難であるため規定化が行われていないが、そのことは荷重の不存在を意味しない。これらの荷重検討を省略するとほぼ確実に地絡事故に至るため、実験または建築物荷重指針への準拠など適切な手段により、現実の安全性が追求される必要がある。これら過荷重の発生を回避しつつ点検の容易性を高める方法に、アレイ面を高く据える構法がある。

また、積雪と電気安全性(BPR) および構造安全性は、設置の縦横は経済性と安全性のトレードオフとなる。特に結晶系にはトレードオフ傾向が強く表れるため、縦横の得失を理解した計画が求められる。

	薄膜 縦	薄膜 横	結晶 縦	結晶 横
電気的現象	モジュール電流は,	逆バイアスされたセ	モジュール電流は, 日陰セ	BPR に長時間大電流。日陰ク
	日陰率に比例して	ルがタイプ B 降伏	ル群の Rsh に制限され大	ラスタ電流は日陰セル群の
	減少。	し、抵抗となる。	幅減少。	Iph とその合成 Rsh によって
				制限される。
火災安全性	-	-	-	×BPR が疲労破壊しやすい。
構造安全性	-	×sin 荷重に脆弱	-	×sin 荷重に脆弱
発電性能	○発電量最大	-	×発電最小	○発電最大

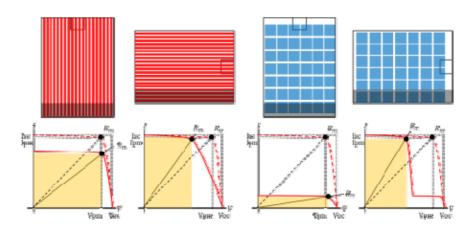


図 A.3-3 積雪による部分遮蔽と IV 特性の関係

参考文献追加

[3] 雪止めの設置是非は、各地方自治体条例によって一意に規定されることがあり、一般法においては JASS12、建築物荷重指針 (1993、2004) にて決着されることが多くなっている。

図 A.3-4 雪止めの設置地域区分(JASS12)

技術的には、「氷堤形成によるすがもれ」、「無用な堆雪による地絡」および「雪おろしの必要を生じることによる人災の恐れ」と「落雪による人や物への加害」との比較衡量となる。

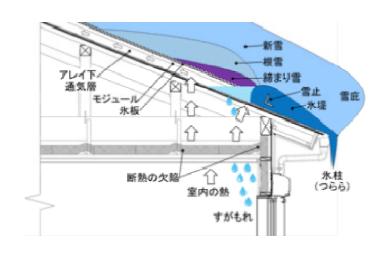


図 A.3-5 すがもれの発生機構

付録 A. 4 地震荷重算定・耐力設計

【目的】飛散、圧潰、倒壊による直流事故を未然防止すること。

【設計指針】

荷重算出方法

- [1] 時刻歴応答解析が行われた高層建築では建物側の構造設計者(担当する建築士)の指示に従うものとし、局部震度法を適用できる場合は局部震度法によるものとすること。局部振動法における震度は、地上設置ではクラス B 以上、建物上設置ではクラス S を適用すること。ただし、非常電源としての機能を持たない発電設備にはクラス A、発電所である地上設置アレイについては、JISC8955 (緩和荷重)の算定法を適用することが出来る。
- [2] 直流部の配管材料と工法は、実況に応じて適宜選択すること。

【設計指針 解説】

[1] 太陽光発電設備は直流電路と交流電路とから成る。このうち直流電路は火災を引き起こす恐れがあることから、「火災の恐れのある他の設備機器(重要機器)」と同等に扱われる必要がある。重要機器は下記文献に定義されている。

平成8年 官庁施設の綜合耐震計画基準及び同解説(下線筆者)

設備機器の重要度による分類は、重要機器および一般機器の二分類とし、次による。

重要機器は、次のいずれかに該当するものをいう。(中略)

- イ 災害応急対策活動に必要な施設等において、施設目的に応じた活動を行うために必要な設備機器
- ロ 危険物を貯蔵又は使用する施設において、危険物による被害を防止するための設備機器
- ハ 避難、消火等の防災機能を果たす設備機器
- ニ 火災、水害、避難の障害等の二次災害を引き起こすおそれのある設備機器
- ホ その他これらに類する機器

官庁施設の総合耐震計画基準及び同解説

局部震度法による建築設備機器(水槽類を除く)の設計用標準水平震度(Ks)

	耐震安全性の分類			
	特定の施設		一般の施設	
	重要機器	一般機器	重要機器	一般機器
上層階,屋上及び塔屋	2.0 (2.0)	1.5 (2.0)	1.5 (2.0)	1.0 (1.5)
中間階	1.5 (1.5)	1.0 (1.5)	1.0 (1.5)	0.6 (1.0)
1 階及び地下階	1.0 (1.0)	0.6 (1.0)	0.6 (1.0)	0.4 (0.6)

※カッコ内は、防振支持の機器の場合に適用する。

以上から、直流区間は、建基法解釈書である建築設備耐震設計・施工指針に準じて設計施工される

必要がある。過去には火災危険への認知が不十分であったため、建物上設置にあっては、それが直流区間であっても、過去にはクラスBが適用されてきた。しかしこれらも順次、クラスA、または、約定において期待される機能に応じてクラスSに移行する必要がある。なお、交流区間は遮断を期待できることから、約定においてクラスBを採用することも可能である。

他方、昨今流行している発電事業用の太陽光発電システムは、非常用の役割(取引当事者間の約定にて定義される)を持たない場合があることから、従来にはなかった考え方として、明文化された特別法のみが着目されることが多くなっている。この論理によると、非常電源としての役割が期待されておらず機能損傷が許容される設備であって、建基法から除外された地上設置太陽光発電システムにあっては、JISC8955の緩和値を適用可能、となる。しかし、官庁設備では生じるとされる設備火災が、民間では生じないとする合理的理由は見当たらない。また知りながら告げないことによる契約法上の問題もあるため、特別法に記載された緩和的な荷重を無暗に適用することは勧められない。

局部震度法(建築設備耐震設計・施工指針2005, 2014) における Ks

	建築設備機器の耐震クラス			
	耐震クラス S	耐震クラス A	耐震クラス B	
上層階,屋上及び塔屋	2.0	1.5	1.0	
中間階	1.5	1.0	0.6	
地階及び1階	1.0	0.6	0.4	

なお、地震力算定にあたって、アレイ重心が不明な場合は、アレイ発電面の重心をアレイの重心と することが出来る。

[2] 直流部に金属管を利用すると地震や温度荷重によってアレイ〜PCS 間の電路が損傷したとき、地絡火災を生じる恐れがある。そこで PF 管を用いて配管への地絡を予防する方法が考えられる。しかし PF 管は自己消火性材料に過ぎないため、火炎が当たる限り燻煙を出し続ける。即ち、金属管と PF 管には、地絡感電を容易に生起する性質と燻煙性というトレードオフがある。したがって、直流電気配管の材料は実況に応じて選択される必要がある。

付録 B 太陽光発電設備の危険

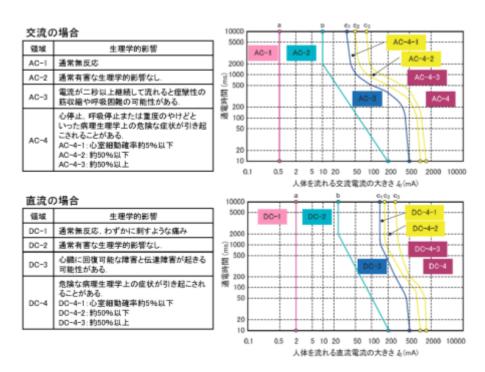
どのような人工物や工業製品にも危険が存在するように、太陽光発電設備にも危険が存在する。具体的には、太陽光発電設備が「直流発電技術」でありまた「必ず構造物をともなう」いう特性から、「構造安全」と「直流電気安全」の二者が損なわれる場合に大別される。

これらの危険が「事故」を生じた場合、その責任はその設備の発注者(所有者)が負う。また、その 受注者や設計・施工者あるいは部材や部品の製造者が求償される場合もある。換言すれば、「事故」が 発生した場合には、その発注者は被害者になるにとどまらず、加害者となり、責任を負う。そこに法令 違反があれば「行政罰」に、他者や他物を加害すれば「刑事罰」「民事罰」に課せられることになる。 しかもその責任は「無過失責任」(過失が無くても責任を負う)である。

したがって、将来における事故発生を未然に防ぐため、発注者は自分が発注し所有する太陽光発電設備がもつ危険を十分理解する必要があり、一方、受注者、設計・施工者あるいは部材や部品の製造者は発注者が負うリスクをあらかじめ説明する必要がある。

太陽光発電設備の直流電気の危険は、他の電気製品や電気設備と同様にそれ自身を原因とした「火災事故」の危険が存在する。特に太陽光発電は交流のような「ゼロクロス点」をもたない直流発電技術であり、かつ定電流源として振る舞う電圧範囲が広いので、アークや過電流を原因とする火災への対策が本質的に困難という課題がある。さらに、日中においては、たとえ太陽光発電設備の運転を停止したとしても個々の太陽電池モジュールは開放電圧を発生し続けることが問題となる。太陽光発電設備は複数の太陽電池モジュールの直列接続で構成されているので、設備全体の電圧は太陽電池モジュールの直列接続数に応じて高くなり、たとえば、一般用の場合は300V程度、自家用の場合は600V程度となる。この自家用については太陽光発電設備の効率と経済性向上のために、さらに高電圧化(1000V程度)された設備もある。

このようなことから、太陽光発電設備は、それ自身が出火の原因となる場合だけでなく、本設備が付帯している建物が火災に見舞われた場合は消防隊員の感電という固有の危険も存在する。太陽光発電設備がこのような高電圧を発生していることを知らずあるいは保護対策が不十分なまま放水などによる消火活動を行った場合、屋根上などで高電圧を発生している直流ケーブルを切断した場合、残火処理時に高電圧発生部分に触れてしまった場合など、消火活動中のさまざまな場面で、消防隊員の感電とその衝撃による高所上からの落下といった恐れがあり、太陽光発電設備が消火活動の妨げになる可能性がある。住宅地域での太陽光発電設備の増加は否応なくその火災が他者を巻き込む危険を生じ、また、山間部のメガ・ソーラーなどでは他物に波及する危険もある。むろん、太陽光発電設備の「感電危険」には通常運用時における保安点検作業員もさらされる。


付録 B.1 太陽光発電に関する感電の危険

感電に関する人間への影響は、IEC/TS 60479-1 (2005) にまとめられており、影響としては感電ショックから心室細動まで $4\sim5$ 段階に分けられることが一般である。また、交流 (AC) と直流 (DC) により影響が異なり、一般的には DC の方が許容可能な電流は大きくなる。太陽光発電は一般的には DC 電源であるが、実際の屋外で利用する際には、日射等により激しく変動することや、今回のように消火活動時の夜間電灯による発電の場合は必ずしも DC と扱えない可能性がある。ドイツの研究グループでは(参考文献 1)、同様に IEC/TS 60479 を併記、フランスのガイドラインも併記、太陽電池の出力には特に言及されていない(参考文献 2)。一方で、UL の報告書では(参考文献 3)、消防隊員に関する

感電危険の報告書のため、消防隊員を成人と想定した DC を想定したリスク評価を行っている。ただし、本解釈はまだ十分に議論されていないことや、直流回路といっても PCS が関係した事故の場合は AC も関連することからも、現状、感電回避は安全側の AC の閾値を主として想定することが望ましいと考える。

また,心室細動まで行かずとも,屋根上等の施工中,消火活動中は感電ショックにおいて屋根からの 滑落も想定されるため,この点も考慮したリスク評価が必要である。

人体抵抗の最悪の状態としては、全身が濡れた状態が想定される。そのため、JEAG8101-1971 や海外の消防リスク評価関係の報告書においても、最悪のケースを想定した人体の最小値として約 500Ω が設定されている(50Vで約100mAとなる)(参考文献4)。

出所) TS C 0023-1人間及び家畜に関する電流の影響-第1部: 一般分野,2009 (IEC/TS 60479-1: 2005) 図B.1-1 電流値と人体への影響

参考文献 1: Heinrich Haeberlin,PV and Fire Brigade Safety: No Panic, but Realistic Assessment of Danger and Possible Countermeasures, 2011, EUPVSEC

参考文献 2: MaÎtriser Lerisque LiÉ aux instaLLations photovoLtaÏques

参考文献 3: Underwriters Laboratories Inc, Firefighter Safety and Photovoltaic Installations Research Project, 2011

参考文献 4: F. Reil, DETERMINATION OF FIRE SAFETY RISKS AT PV SYSTEMS AND DEVELOPMENT OF RISK MINIMIZATION MEASURES, EUPVSEC

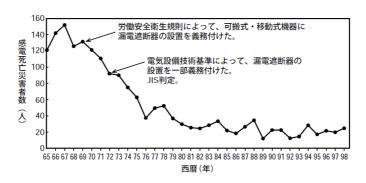
付録 B.1.1 感電の危険の基礎

上記の理解をさらに深めるため、感電に関する基礎を以下に示す。

感電は最悪、死に至る。しかし全ての感電が生体に深刻な影響をもたらすものではない。そこで IEC は Electric Shock(感電)と Electrical Shock(電撃)を使い分け、死の主要因である電撃の影響を適切に評価する取り組みを行っている。ただし日本語では感電の語が広く定着していることから以後、感電と電撃の区別をせず、感電の語を用いる。またここでは医療、例えば開胸手術におけるミクロショックは除外する。ここでは、太陽光発電に限定されるため、あくまで電気使用者や作業者のマクロショックとして取り扱い、雷撃も除外する。

(1)太陽光発電設計にとっての感電, 閾値

感電があるからといって電気を全廃することはできない。そこで感電事故を予防しながら電気の恩恵を享受することが必要である。ここで、全ての電気が危険なわけではない。たとえば乾電池によって感電死する恐れは無い。一方家庭用の 100V で感電死が報告されている。どのような状態からが危険であって、どこまでなら危険ではないのかの境界、すなわち閾値を知ることが感電防止の最初のステップとなる。しかし、感電による事故のすべてを直接に取り扱うのは難しい。たとえば労働安全衛生の考え方では、感電による驚きによって体勢を崩し高所から落下するといった二次的危険を考慮する必要がある。一方、高電圧での感電は即、心臓停止を招く。ここでは、前者のような間接原因としての感電事故と、後者のような高電圧原因を除外し、感電が直接の死因となる低圧電気(ここでは 1000V 以下程度)を取り扱う。


(2)日本における感電研究の歴史的変遷

明治 33 年に東京の牛肉店で女中が電灯コードに触れて感電死した。当時は柱上変圧器の高圧側と低 圧側の混触防止策が無く、これが第二種接地工事が始まった原点と言われている。当時は電路の絶縁が 悪く、感電死亡事故が多発していたようである。

大正3年には渋沢元治氏が水を入れたバケツに両足を入れて、濡れた手で裸電線を握るという実験を行っている。この時の実験条件は30V、4mAであったが実験中止となり、その後片手で電線を握る実験を行ったところ50V以上でも何も感じなかったため、許容接触電圧を50Vとした(参考文献1)

接地工事の体系化は明治 44 年の電気工事規程公布に始まる。これ以降、感電防止策の主流として改正が続いた。一方、地絡保護の観点から漏電遮断器は昭和 40 年代に研究、規格化もすすめられ、労働災害防止のために用いられ始めた。

その感電保護効果が知られるようになった 1972 年の電技改正では漏電遮断器の設置を義務付ける範囲が拡大され、現在にいたるまで多大な成果をおさめている。この頃の我が国の基準根拠は、ダルジール(米)やケッペン(独)の研究成果を使用しており、低圧電路地絡保護指針(1971)として結実した。

図B.1.1-1 国内における感電脂肪火災者数

表B.1.1-1低圧地絡保護指針

	接触状態	許容接触電圧
第1種	人体の大部分が水中にある状態	2.5V 以下
	人体が著しく濡れている状態	
第2種	金属製の電気機械装置や構造物人体の一	25V 以下
	部が常時接触している状態	
	第1種,第2種以外の場合で,通常の人体	
第3種	状態において接触電圧が加わると, 危険性	50V 以下
	が高い状態	
	第1種,第2種以外の場合で,通常の人体	
第4種	状態において接触電圧が加わっても危険性	年川17日チンプ
	の低い状態	制限なし
	接触電圧が加わるおそれがない場合	

(3) 1930 年代の感電研究

感電保護の考え方は、1930年代のダルジール (米) やケッペン (独) の考え方を基に 1974年に IEC479 としてまとめられた。ケッペンは電流時間積の考え方に至った。

$$I \bullet T = -$$
定

彼は実際の限界値 50mA 以下は時間に関係ないものとし 50mA 以上について下式を見出している。

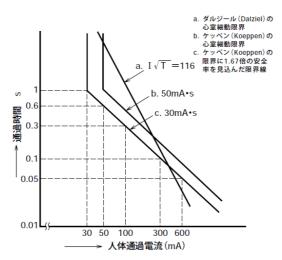
$$I \bullet T = 50 \, mA$$

上式は図 B.1.1-2 の b 直線であり、 b 線の右側が危険、左側が安全範囲になる。 c 線は 1.67 の安全率を 見込んだものであり、これがヨーロッパや我が国に採用されてきた 30 mA の数値根拠となっている。

一方, ダルジールは, エネルギー一定の考え方に至った。

$$I^2 \bullet T = -$$
定

彼は羊による実験の結果から次式を得た。


$$I = 116 / \sqrt{T}$$

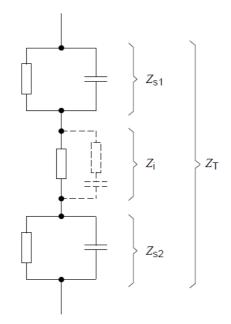
これを 70kg の体重に換算して次式を提唱した。

 $I = 157 / \sqrt{T}$

これが、図 B.1.1-2 の a の線である。

両者の研究を比較するとケッペンの限界のほうが下回っており,安全サイドであるため,日本や欧州では,ケッペンの研究結果を基本に考えている。

図B.1.1-2 感電保護における人体通過電流と通貨時間との関係


(4) 人体インピーダンス

感電の主因が電流にあることを明らかする一方, 感電電流の量を推し量るために人体の内部インピー ダンスについても研究が行われた。

人体の内部インピーダンス Zi は概ね 500Ω 程度の抵抗性であり、僅かな容量性を持つ。図 B.1.1-3 の その等価回路を示す。この値は主に電流経路に依存し、接触面積には殆ど依存しない。一方、人体の皮膚インピーダンスは抵抗と静電容量の並列回路網から成る。低い接触電圧ではこの値は電圧、電気波形、充電部への接触圧や接触面積、皮膚の乾湿、塩分の有無、個人差によって大きく変化し、高電圧では皮膚が破れることにより無視できるほどに低下する。

IEC479 には、過去の生体と死体での実測結果に基づき、得られた限りのデータから各条件でのインピーダンスがまとめられている。図 B.1.1-4 には最悪条件に近いものを挙げる。

なお、実際には、着衣があり靴があるので上表をそのまま適用するのは慎重に過ぎる場合があり得る。 しかし発汗のために湿潤している状況ではこれらも絶縁物としての機能を果たすとは言えず、常に最悪 の状態を考慮に入れるべきである。

図B.1.1-3 人体インピーダンスの等価回路

Zi: 人体の内部インピーダンス、Zs: 人体の皮膚インピーダンス

接触電圧	母集団のパーセンタイル値がこの値以下である					
	人体の合成インピーダンス($Z_{ m T}$) (Ω)					
V	母集団の5%	母集団の 50 %	母集団の 95 %			
25	960	1 300	1 755			
50	940	1 275	1 720			
75	920	1 250	1 685			
100	880	1 225	1 655			
125	850	1 200	1 620			
150	830	1 180	1 590			
175	810	1 155	1 560			
200	790	1 135	1 530			
225	770	1 115	1 505			
400	700	950	1 275			
500	625	850	1 150			
700	575	775	1 050			
1 000	575	775	1 050			
漸近値=	575	775	1 050			
内部インピーダンス						

注記 1 幾つかの測定では、電流経路が片手から片足の場合の人体の合成インピーダンス (Z_T) は、電流経路が手から手の場合よりも幾分 $(10\sim30~\%)$ 低いことを示してい x

注記 2 この場合、皮膚インピーダンスが低いため、 Z_T はほとんど電流継続時間に依存しないと考えられる。 Z_T は人体の内部インピーダンス (Z_i) に近づく。

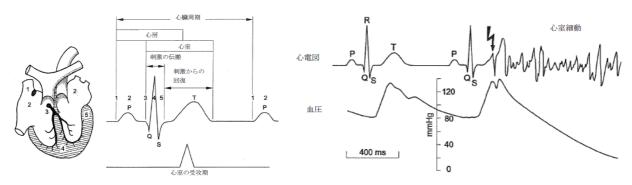
注記 3 電圧 230 V (ネットワークシステム三相 4 線式 - 230/400 V) の標準電圧に関しては 人体の合成インピーダンスが 225 V の接触電圧と同じになると想定される。

注記 4 Z_{Γ} の値は、 5Ω の倍数である。

図B.1.1-4 手から手に対する人体インピーダンス

(交流 50/60Hz, 塩水湿潤状態, 接触面積が 10000m m²)

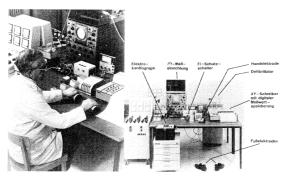
(5) 心室細動現象


感電による死亡災害の種類は、既に述べたとおり多様である。しかし低圧の場合は、心室細動現象によるものが大部分であることについては、専門家の見解が一致している。したがって、低圧では心室細動の閾値を考慮することが重要である。

心臓は 0.75 秒周期で規則正しく動き,血液を体内に循環させている。しかし外部からの刺激によって,この周期が乱れると心臓から発生する電気信号が乱され心室の振動が発生する。

この原因には大きく二種類があります。ひとつは心臓に電流作用が直接に及ぶ場合である。人体抵抗を

考慮するとこれは低電圧ではなく高電圧での感電時起こる。もう一つは,通電時間が心臓の拍動周期を 超過した場合であり、低圧での感電死亡事故はこれが主要因である。


また、心室細動のリスクは、交流と直流でも異なる。心臓の拍動周期には受攻期(vulnerable period)と呼ばれる、外的刺激に対して脆弱な期間(心臓周期の約10%)がある。心臓はこの期間に外部からの刺激を受けると心室細動が起こりやすくなるため、低周波交流ではよりリスクが高くなります。受攻期の外的刺激(Ron T)という意味で、感電は(ボールの打撃などによる)心臓震盪と類似点を持っているようである(参考文献2)

図B.1.1-5 PQRSTと受攻期 図B.1.1-6 受攻期と心室細動の誘発

(6) 国際的な感電評価体系

このように心室細動の閾値を表現するには単一の直線的な式では無理があり、電流領域と時間領域に分けて考えることが重要である。1974年のIEC479-1は、ケッペンやダルジールの研究を元にしたものであった。しかし従来体系は電流と時間との領域分離が不十分とされ、ビーゲルマイヤーの精力的な実験成果を基に新しい体系化が行われた。ここで特徴的なのは、感電死と電流との関係がエネルギーに依存するとの考えは誤解であると指摘し、心室細動電流が、心拍を境に Z カーブとなることを提案したことである。また、感電防止に関わる三重保護(直接接触保護、間接接触保護、追加保護)の概念もこのころに確立されている。

図B.1.1-7 ビーゲルマイヤー博士自身による人体インピーダンス測定

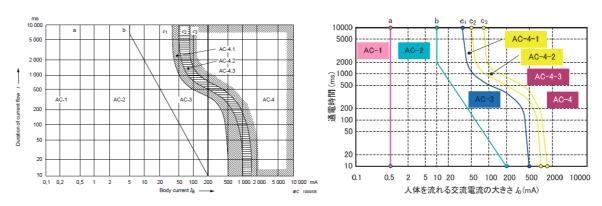
(7) 心臟電流係数

電流通過部位も考慮される必要がある。IEC479 には、左手から両足への電流によって生じる心室細動の危険を基準として、同程度の危険を発生させる別経路の場合の係数が示されている。ただし、これは心室細動に関連する経路に対応する危険について概略の評価としてだけ使用可能である。この係数は交流と直流とで共通である。

$$I_h = \frac{I_{ref}}{F}$$

Iref: 安全限界曲線中に示す左手-両足経路の電流

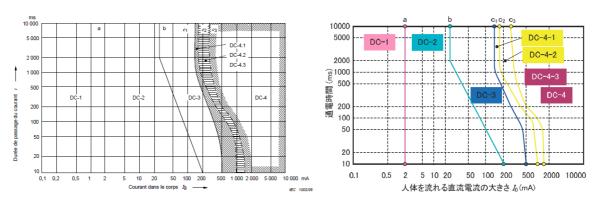
Ih:心臓電流係数表に対する人体電流


F:心臟電流係数

電流経路	心臓電流係数 F
左手から左足, 右足又は両足へ	1.0
両手から両足へ	1.0
左手から右手へ	0.4
右手から左足、右足又は両足へ	0.8
背中から右手へ	0.3
背中から左手へ	0.7
胸から右手へ	1.3
胸から左手へ	1.5
尻から左手, 右手又は両手へ	0.7
左足から右足へ	0.04

図B.1.1-8 心臓電流係数

(8) IEC479-1 の安全限界曲線


IEC の TS60479-1 (2005) における, 左手から両足への感電電流と通電時間, 安全限界に関する曲線を示す。IEC の安全保護の考え方, 各国の法令, また安全保護装置メーカーはこの成果を基本に据えていると言って過言ではない。

図B.1.1-9 AC15~100Hzの安全限界曲線 図B.1.1-10 AC15~100Hzの安全限界曲線

表B.1.1-2 AC15~100Hzの安全限界

領域	生理学的影響				
AC-1	通常無反応				
AC-2	通常有害な生理学的影響なし。				
AC-3	電流が二秒以上継続して流れると痙攣性の筋収縮や呼吸困難の可能性がある。				
	心停止,呼吸停止または重度のやけどといった病理生理学上の危険な症状が引き起こされることがある。				
A.C. 4	AC-4-1: 心室細動確率約 5%以下				
AC-4	AC-4-2:約50%以下				
	AC-4-3:約50%以上				

図B.1.1-11 DCの安全限界曲線 図B.1.1-12 DCの安全限界曲線

領域生理学的影響DC-1通常無反応、わずかに刺すような痛みDC-2通常有害な生理学的影響なし。DC-3心臓に回復可能な障害と伝達障害が起きる可能性がある。危険な病理生理学上の症状が引き起こされることがある。DC-4・1: 心室細動確率約 5%以下DC-4-2:約50%以下DC-4-3:約50%以上

表B.1.1-3 DCの安全限界

(9) 交流と直流の違い

過去多く研究されてきたのは、交流感電である。しかし本文書が扱うのは太陽光発電の直流電気である。従って、交流と直流の違いに注意を払う必要がある。そのような観点で IEC479 の記述を原文に齟齬がないように注意深く整理した結果を以下に示す。

- ・ 交流と心臓周期
 - 正弦波交流の(50/60Hz)の場合,電流が1心臓周期を超えると細動の閾値は大幅に低下する。
- ・ 直流の知覚, 反応の閾値
 - 交流と違って電流の投入時遮断時にしか感覚がない。通電中はなんの感覚もない。
- ・ 直流の心室細動閾値と電流方向との関係 下向き電流(足が負極)の閾値は上向き電流(足が正極)の2倍になる。
- ・ 直流の安全限界曲線
 - 曲線 C1 以下での感電死報告は知られていないことから C1 は全ての人に対して、おそらく安全側であることを示す。

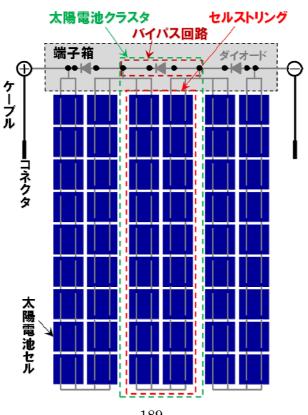
また、交流と直流の影響の違いを評価するのに直流/交流等価係数(d.c./a.c. equivalence factor)という考え方も提示されている。一例として心室細動が 50%確率の 10 秒間の等価係数を次に示す。

$$k = \frac{I_{d.c. \text{HB}}}{I_{a.c. \text{HB}}} = \frac{300 mA}{80 mA} = 3.75$$

参考文献 1: BENDER: Renewable energy Reliable and efficient use of the power of nature 参考文献 2: CoSTR 翻訳グループ(2007): 2005 INTERNATIONAL CONSENSUS ON CARDIOPULMONARY RESUSCITATION (CPR) AND EMERGENCY CARDIOVASCULAR CARE (ECC) SCIENCE WITH TREATMENT RECOMMENDATIONS: Part 10.9: Electric Shock and Lightning Strikes

参考文献 3:高橋健彦(2007):日本における感電保護の現状と実態

参考文献 4: 竹谷是幸 (1974): 漏電しや断器の基礎と実務知識


付録 B.2 太陽光発電に関する火災危険

太陽光発電設備の火災要因となる部位および事象は、太陽電池モジュール(太陽電池セルの逆電圧・ 逆電流動作、モジュール回路内での直並列アーク)と、アレイ回路(直列アーク、並列アーク、地絡ア ーク)とに大別される。本文書では、これまでの事故要因分析の研究等から「太陽電池モジュールの火 災危険)」と「直流アークの火災危険」に分けて火災の起点を示し、起点から火災発生までの間に事故 を抑止する対策装置に不備があったために被害拡大した米国の要因分析について紹介する。また、米国 で発生した事故と同様なことが国内システムについても起きうるかについて述べる。最後に消防活動時 における消火・残火処理リスクの問題について説明する。

付録 B.2.1 太陽電池モジュールの火災危険

(1) 太陽電池モジュールの電気回路構成

図 B.2.1-1 は太陽電池モジュールの電気回路を模式的に示したものである. 数枚~二十数枚の太陽電 池セル(以下「セル」)を直列に接続してセルストリングが構成され、それにバイパス回路(Bypass Route, 以下「BPR」)を並列に接続している。このセルストリングと BPR で構成される単位を本ガイドイラン では,太陽電池クラスタ(以下「クラスタ」)と呼ぶ。BPR はセルストリングの出力電圧によって逆バ イアス方向に電圧が印加されるように接続されたバイパス・ダイオード(Bypass Diode. 以下「BPD」) を主たる構成要素として, BPD とセルストリングをつなぐ導体端子, さらにそれらの節点とで構成され る. そして, 1 枚の太陽電池モジュールは, クラスタ 1 個あるいは複数のクラスタを直列に接続するこ とにより構成される. クラスタの出力端子は太陽電池モジュールの裏面に装着された端子箱(Junction Box。以下「JB」) 内に引き込まれ、JB 内の導体端子を介して BPD や太陽電池モジュールの出力ケーブ ルに接続されている。

(2) 太陽電池の電流-電圧特性と BPR の役割

図 B.2.1-2 は、太陽電池モジュールを構成するセルの電流-電圧特性曲線を概念的に示したものである。この図において、セルが発電素子として動作する正常域は、電流と電圧とがともに正の値をとる「発電象限」のみである。

一方,電圧が負となる「逆電圧象限」や電流が負となる「逆電流象限」でセルが動作する場合には、 セルは発電素子から負荷に転じ、電力を消費する。そして、モジュール内で数十枚、モジュールストリ ングで数百枚もが直列に接続されている個々のセルは、パワーコンディショナが制御するアレイの電流、 電圧動作点の影響を受け、これらの三つの象限のいずれかの動作することとなる。

個々のセルがすべて発電象限で動作している場合には問題とならない。しかし、逆電圧象限や逆電流 象限で動作するセルは発熱をともない、しかも、その様相は同等ではなく、逆電流象限ではセルは面的 かつ穏やかに発熱するが、雪崩降伏限界点を超えた逆電圧象限では局所的かつ激しく発熱する。したが って、危険度の観点からは、逆電圧象限で動作するセルが問題となる。

BPR はこのような危険性を回避する保護回路の役割を果たしている。図 B.2.1-3 は BPR が装備された モジュールの電流ー電圧特性曲線の概念図である。クラスタ両端の逆電圧が BPD の動作電圧に達する と BPR に電流が迂回 (バイパス) しはじめる。BPR に流れる電流とセル回路に流れる電流の和が動作 電流に達したところでクラスタ両端の電圧が固定され、クラスタ内のセルが雪崩降伏限界点を超えることを回避させている。つまり、BPR はクラスタ内のセルに印加される電圧をクラスタ分程度に抑え、逆電圧象限での電力消費 (発熱)を限定する「保護回路」の役割を担っている。

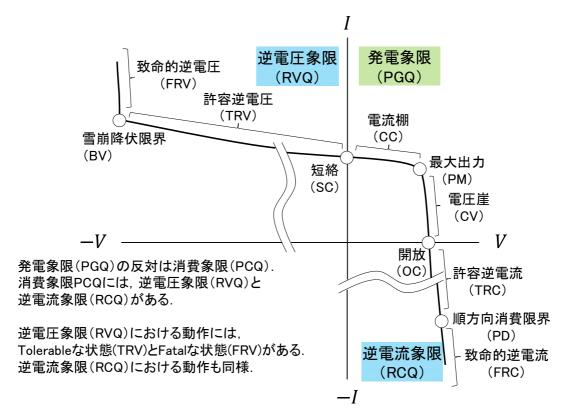


図 B.2.1-2 セルの I-V 特性の概念図

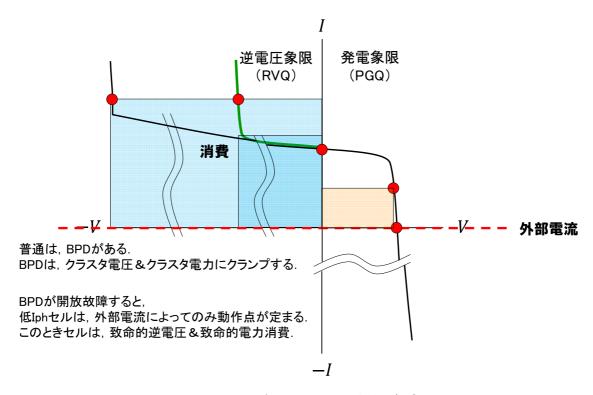


図 B.2.1-3 モジュールの I-V 特性の概念図

(3) BPR 開放故障の事例

現在の太陽電池モジュールの国際・国内規格では、保護回路である BPR の品質に関する規定や耐久性 試験が未整備であるため、長期にわたる太陽電池モジュールの運用期間において、常に BPR の信頼性が 確保されているとはいえない。図 B.2.1-4 は、10 年使用したモジュール内の BPR の断面の一例である。この例では、BPD 自身はなお機能を保持していたが、電気的節点となるはんだにクラックが形成された ため、BPR が開放状態にあった。

また、図 B.2.1-5 は(独)産業技術総合研究所(産総研)において 10 年運用されているモジュール (3 クラスタ構成) の裏面の一例である. このモジュールは影の影響を頻繁にうける場所に設置されているが、BPR が開放故障しているため当該クラスタのセルの発熱により裏面シートが「熱やけ」している。なお、産総研にはこれと同型式のモジュールが 1272 枚設置されているが、そのうちの約 850 枚に BPR の開放故障が発見されている。

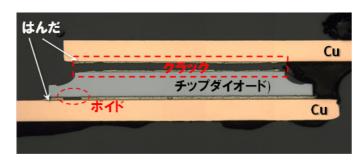


図 B.2.1-4 BPR が開放故障となっている端子箱内の断面

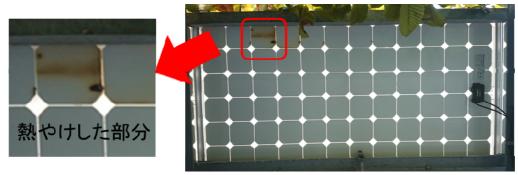


図 B.2.1-5 BPR が開放故障している故障したクラスタに頻繁に陰がかかるモジュールの裏面の様子

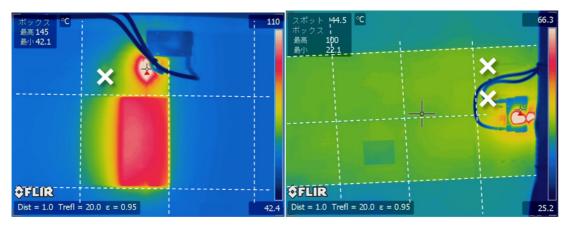

(4) 太陽電池モジュールの発電回路不良から BPR 開放に至った事例

図 B.2.1-6 は、産総研で発生している太陽電池モジュールの不具合の事例である。


このモジュールでは、まず、同図(a)に示すように、中央クラスタにおいて何らかの原因でセルを相互につなぐ2本のインターコネクタの片方(図中「×」印で示した部分)が導通不良となり、その反対側のセルへの電流集中によって発熱が発生した。やがて、残りのインターコネクタも導通不良となり、同図(b)にように中央クラスタでは動作電流が BPR に迂回するようになった。本モジュールはこの状態を5年程度維持していたが、やはり BPR の節点であるはんだにクラックが形成され、当該接点が剥離、電気的には開放状態となった。しかし、当然のことながらこの太陽電池モジュールの各セルは発電機能を保持し、また、接続されている他のモジュールからの電流が通電する。BPR が開放故障となり機能を喪失しているため、この通電電流は導通不良となっている発電回路を流れざるを得ず、その結果、導通不良部分が局所的に激しく発熱し、裏面シートを焼損させ、かつ表面ガラスが粉々に割れてしまった(同図(c)および(d))。さらに、この状態に至っても日中における通電が続いたため、モジュール内には局所的に摂氏 500 度を超える部分が発生し(同図(c))、それは約半年にわたって継続した。

太陽電池モジュールを構成する部材は難燃性であるため、太陽電池モジュールが高温になってもそれ 自身が発火するリスクは低いと考えられるが、住宅屋根など構造物上に設置された太陽電池モジュール では、その裏面と屋根の間の狭い空間に、枯葉が堆積している場合や鳥やリスなどの小動物が営巣して いる場合も珍しくない。

これまでのわが国の太陽光発電システムは、点検の法的義務がなくかつモジュールに接近しての目視 点検が困難な住宅分野を中心に普及が進んできたため、モジュールの不具合の実態が十分には明らかに なっていないが、モジュール内の BPR 開放故障は太陽光発電設備の火災要因として正しく認識される必 要がある。

(a)セル相互の接続の片方に導通不良が発生したモジュールの表面温度分布(裏面) (b)セル相互の接続がともに導通不良となり BPR に電流が迂回している様子(裏面)

(c)BPR が開放故障し裏面シートが焼損している様子(裏面) (d)BPR の開放故障にともない表面ガラスが粉々に割れている様子(表面)

(e)裏面シート焼損部の表面温度分布 図 B.2.1-6 産総研で発生しているモジュールの不具合の例

付録 B. 2. 2 直流アークの火災危険

(1) アークと太陽光におけるその危険性

気体放電には、幾つかの段階が存在する。アーク放電はその中の最終段階であり、低い印加電圧で陰極からの電子放出により大電流が流れ、電極間の導電性が極めて高いプラズマ状態となる放電現象である。アーク放電は、大気中で強烈な光を放つ。図 B.2.2-1 に電極間の電位分布図を示す。アーク空間は3つの領域に分類され、それぞれの領域には陰極降下電圧、アーク柱電圧、陽極降下電圧と呼ばれる電位差が存在する。それらの総和がアーク電圧として定義され、それぞれの空間的厚みの総和をアーク長(以下、電極間距離)と呼ぶ。図 B.2.2-2 にアークの概念図とアーク柱の断面図を示す。アーク放電は空気より軽いプラズマであるため、その温度によって生ずる上昇気流により図 B.2.2-2(a)に示すような弧となる。アークの和名は電弧であるが、使用されることは少ない。アークが発生すること(またはアークを発生させること)を点弧と呼び、アークが消えること(またはアークを消すこと)を消弧と呼ぶ。図 B.2.2-2(b)に示す断面は、温度と電流密度が極めて高いコア部と、温度と電流は少々小さいが化学的に活性な外炎部から構成される。図 B.2.2-3 に直流アークの外観を示す。またアークは陰極からの電子放出により、陰極温度が十分高い状態において維持される。図 B.2.2-2(b)のアーク柱断面を半径 r で規格化し、コア(弧心)外炎各部の温度分布を図 B.2.2-24 に示す。コア部は約8000~12000K、外炎部は空気の主成分である窒素が電離するため、約1000~8000Kとなる。

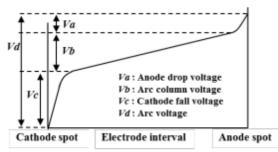
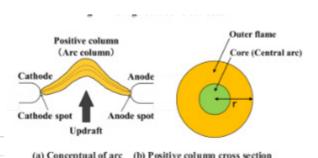



Fig. 1 Voltage between electrodes

(a) Conceptual of are (b) Positive corunal cross section

Fig. 2 Structure of electric arc and cross section (6)

図 B.2.2-1 アークの領域 1 図 B.2.2-2 アークの領域 2

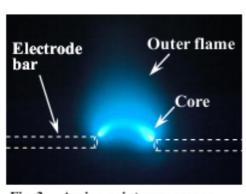


Fig. 3 Arcing point appearance 図 B.2.2-3 アークの外観

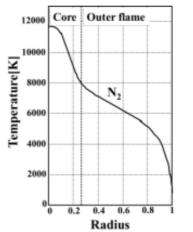


Fig. 4 Temperature distribution of arc⁽⁶⁾

図 B.2.2-4 アークの温度分布

参考文献:

アークは一度発生すると、放電によってプラズマが供給されるため、電圧が低下しても消えにくい。交流の場合は、電圧が 0 になる瞬間があるため、この時にアークが消え、一度消えれば点弧しづらい。ところが太陽光発電の直流電気回路においては、電圧が 0 になる瞬間が無いため、一度生じたアークは電圧が変動しても消えにくい。たとえば、米国での火災事例(Mount-Holly)で生じたアークは、15cmもの距離を橋絡し得たと推測されており(Solar ABSc)、焼損が進みアークの場所が移動しても、消弧し難かったと考えられる。アークには、高音や光源として使用するために意図的に発生させられたものと、事故によって意図に反して発生したものとがある。意図に反して発生したアークは、アークフォルトと呼ばれる。本文書においては、アークはアークフォルトのことを指している。

また、アークにはその発生個所の別により、表 B.2.2-1 に示した種類がある。表を見ると、太陽光発電においては、ひとつの1故障をトリガに、並列アークも直列アークも発生し得る。これらの故障を発生させないよう、設計施工上の注意が第一義である。たとえば正極側電路と負極側電路を多心線ではなく単線で配線する、SPD から出火しても外部に延焼しないよう接続箱筐体を金属製とする、といった対策が挙げられる。これらの対策を行っても、なおも発生するアーク事故への対処法の考え方は、「2.5.3 DC 直列・並列アーク対策装置(アーク検出/遮断器)」において触れた。

 種類
 発生個所
 原因

 地絡アーク
 電路 - 大地間
 電路 - 大地間の絶縁不良

 並列アーク
 電路 - 電路間
 電路 - 電路間の絶縁不良

 直列アーク
 電路内
 電路の導通,接触不良

表 B.2.2-1 アークの種類

(2) 地絡アークによる火災危険

地絡アークによる火災危険として,米国における地絡アーク火災の発生原因と国内における課題をま とめる。

①地絡検出不感帯による事故拡大(米国事例)の要因分析と教訓

2008 年 4 月 5 日には米国 California 州 Bakersfield において,2011 年 4 月 16 日には同国 North Carolina 州 Mount Holly において、太陽光発電システムの大規模な火災事故が発生した。これらの火災は、いずれも複数点で地絡が発生したことによる、地絡アーク火災である。

図 B.2.2-5 Bakersfield 火災 2009 年

図 B.2.2-6 Mount Holly 火災 2011 年

Solar ABC は地絡の検出不感帯が原因であることを看取し、検出不感帯の無い地絡検出の必要性を主張した(The Ground-Fault Protection Blind Spot: Safety Concern for Larger 太陽光発電システム ystems in the U.S., B. Brooks, Solar ABCs White Paper(2012).。なお、両システムの直流回路構成の詳細は不明であるが、諸論文から推定したアレイ仕様の概要を以下に示す。

表 B.2.2-2	Bakersfield	システム。	∠ Mount Holl	yシステムの概要
-----------	-------------	-------	--------------	----------

項目	Bakersfield System	Mount Holly System
ストリング電流	$5A(@1000W/m^2)$	$7.2A(@800W/m^2)$
ストリング電圧	約 300V	558V
ストリング数/接続 箱	28,31,56	22
接続箱個数	3	15

上記報告によれば、Bakersfield、Mount Holly 両システムとも、地絡検出の感度が低い個所(不感帯)において地絡が発生し、それが検知されないため、除去されず継続していたことに、事故の原因があった。すなわち、図 B.2.2-7 に示したシステムでは、多くの地絡故障は図 B.2.2-8、図 B.2.2-9 に示したとおり検出、事故電流遮断

が可能であるが、図 B.2.2-10 に示した地絡故障は検出が難しい。この状態において、第二の地絡故障が発生すると事故電流が発生し、ヒューズが溶断しても事故電流を停止することができない(図 B.2.2-11)。

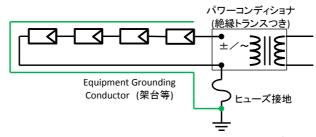


図 B.2.2-7 直流がヒューズ接地されたシステム(通常運転時)

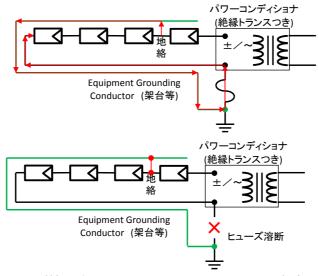


図 B.2.2-8 直流がヒューズ接地された システム(地絡直後)

図 B.2.2-9 直流がヒューズ接地された システム(ヒューズ溶断後)

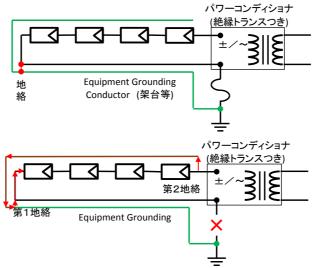


図 B.2.2-10 直流がヒューズ接地されたシステム

図 B.2.2-11 直流がヒューズ接地されたシステ

(不感帯での地絡発生時とシステム運転継続)

(第二地絡故障による事故電流の発生と継続)

電力系統に接続され地絡保護装置を備えた電気設備は、その中で地絡または漏電が検出された場合、電力系統から解列される。これによって、それが電力使用設備であれば、設備内は無電圧かつ無電流化され、鎮火に向かうと期待される。しかしながら太陽光発電システムの直流電気回路は、その構成要素である太陽電池が、日射がある限り発電を継続するので、これを無電圧かつ無電流化することは、原理的に不可能である。したがって、太陽光発電システムの直流電気事故に対しては、以下の二つの視点からの検討と対策を実施しなければならない。

- a. 「故障」の段階でそれを除去し、「事故」に至らしめない方略
- b. それでも事故に及んだ場合, その被害を「軽減」する方略

本節は、上記 a. の観点から既存設備の不備を論じるものである。(提言は、"2. 4 絶縁・地絡保護・過電流保護の基本原則"に記載した)。上記 b. の観点からは、アーク検出/遮断装置(AFCI)の利用が考えられるが、AFCI には以下の課題がある。

(1) 状況によっては事故を拡大させる懸念があること。

(2.5.3 DC 直列・並列アーク対策装置(アーク検出/遮断器)に記載した)

- (2)全ての直流地絡火災がアークを伴うとは限らないこと
- (3) AFCI 設置位置と地絡位置の関係によっては効果が無いこと。例えば、接続箱出口に AFCI を設置した場合、同一接続箱内での多点地絡に対しては AFCI の効果を期待しがたい。

参考文献; G. Ball et al., Inverter Ground-Fault Detection "Blind Spot" and Mitigation Methods, SolarABCs Report(2013)

上記(1)への対策として、米国においては、アークの種類(直列/(並列または地絡))を判定し、その結果により負荷を遮断/短絡する方法が検討されているが、課題が残されている。(2)に対しては、GFCI は原理的に無力である。(3)に対しては、各ストリングに AFCI を設置する方法が考えられるが、この方法でさえも、ストリング内多点地絡に対しては効果が無い。

これらのことより、AFCI だけで地絡火災に備えることは出来ず、上記 a. として、事故の未然回避が必要である。そのためには、本節でその存在を指摘する検出不感帯は、除去されなければならない。

なお、AFCI は地絡以外の原因(たとえば線間短絡)でアークが発生した時にもそれを検知できる点で優れているが、交流システムにおける事故検知/遮断装置の様に確実には、最後の砦としての役割を果たすことができない。換言すれば、交流システムのおける漏電遮断器や過電流遮断器の様に、事故点への電気エネルギーの供給を確実に遮断できる訳ではない。終息できる事故の範囲を広げるためには、回路設計の中に上述事故モードを取り入れることが必要である。今後の AFCI の利用については、別章(2.5.3 DC直列・並列アーク対策装置(アーク検出/遮断器))で触れた。

②国内における地絡検出不感帯による事故発生の可能性

米国接地システムにおける太陽光発電システムの直流地絡火災を抑止できなかった原因は、地絡検出の不感帯であった。国内太陽光発電システムにおける直流地絡検出は、パワーコンディショナによって行われている場合が多い。そこで、パワーコンディショナの地絡検出機能の評価結果を以下に示す。

国内大規模 PV システム用パワーコンディショナの地絡検出機能に検出不感帯がある結果が報告されている(稚内メガソーラープロジェクト(4)~1MW-PCS 導入等に伴う最適な設備構成について~ 矢元

修 北海道電力 2009 年度研究年報 Vol41 (2009))。その中には完全地絡(絶縁抵抗 0)しても、正極および負極以外の電位では地絡検出できなかった結果も示されている。また、国内住宅 PV システム用パワーコンディショナの地絡検出機能にも検出不感帯があることが明らかになっている(太陽光発電システムの直流電気安全に関する基盤整備, 2014 報告書)。

したがって、国内の PV システムは、大規模であれ住宅用であれ、米国接地システムと同様のメカニズムにより発災する危険をはらんでいる。以下に、国内住宅用パワーコンディショナの地絡検出不感帯の評価結果を紹介する。これらの結果は、国内住宅用パワーコンディショナの地絡検出にも、検出不感帯があり米国接地システムと同様の火災の危険が存在することを示すものである。

米国接地システムにおける太陽光発電システムの直流地絡火災を抑止できなかった原因は、地絡検出の不感帯であった。国内大規模 PV システム用パワーコンディショナの地絡検出機能にも検出不感帯があることが報告されており、その中には完全地絡(絶縁抵抗 0)しても、正極および負極以外の電位では地絡検出できない機種があることが示されている(稚内メガソーラープロジェクト(4)~1MW-PCS 導入等に伴う最適な設備構成について~ 矢元 修 北海道電力 2009 年度研究年報 Vol41 (2009))。

また、国内住宅 PV システム用パワーコンディショナの地絡検出機能にも検出不感帯があることが明らかになっている(太陽光発電システムの直流電気安全に関する基盤整備, 2014 報告書)。

したがって、国内の PV システムは、大規模であれ住宅用であれ、米国接地システムと同様のメカニズムにより発災する危険をはらんでいると考えられる。以下に、国内住宅用パワーコンディショナの地絡検出不感帯の評価結果を紹介する。これらの結果は、国内住宅用パワーコンディショナの地絡検出にも、検出不感帯があり米国接地システムと同様の火災の危険が存在することを示すものである。

a. 国内住宅用非絶縁型パワーコンディショナの地絡検出不感帯の評価

図 B.2.2-12 に、国内住宅用非絶縁型パワーコンディショナの地絡検出不感帯を評価するための実験装置を示す。この実験ではまず、パワーコンディショナを停止した状態で、図中、 $P1\sim P10$ の何れかを選び、模擬架台に第一模擬地絡させた。その際の抵抗値は、 $Q1\sim Q11$ の何れかを選択することによって、 $100\sim 300\,\Omega$ の範囲の何れかの値とした。次にこの状態で PCS を起動し、地絡検出ができるかを評価した。

実験結果を表 B.2.2-3,表 B.2.2-4,表 B.2.2-5 に示す。表中、×はパワーコンディショナが地絡を検出できず、起動してしまうことを表している。いずれのパワーコンディショナも、地絡を検出出来ない場合があることが確認された。

例えば、表 B.2.2-3 において、Q1 (300 Ω)、p7 の欄に×が記入されている例を説明する。まずパワーコンディショナ停止状態において、図 B.2.2-12 の p7 を Q1 に接続することにより p7 を仮想架台に 300 Ω で模擬地絡させる。この状態で、パワーコンディショナのスイッチを ON にして起動させると、地絡を検出することができず、パワーコンディショナは起動する (第 1 地絡故障の不検出)。このことを×で表した。この状態において、図 B.2.2-12 左端にある、第二地絡スイッチを閉じて第二地絡を発生させると、パワーコンディショナは地絡検出して停止するが、事故電流を停止することはできない。なお、上記試験ではパワーコンディショナ起動動作を通して、地絡検出に失敗した場合を検出不感帯としたが、パワーコンディショナ起動後に地絡を発生させた場合は、これよりも地絡検出に失敗する範囲(模擬地絡位置および模擬地絡抵抗の範囲)は広がる。

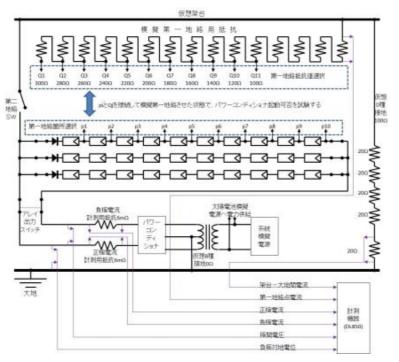


図 B.2.2-12 非絶縁型 PCS 地絡検出機能評価用実験装置

表 B.2.2-3 A 社製 PCS の地絡検出可否

地絡位置 抵抗値	р6	р7	p8	р9	p1 0
Q1(300Ω)	0	×	0	0	0
$Q2(280\Omega)$	0	×	0	0	0
$Q3(260\Omega)$	0	×	0	0	0
$Q4(240\Omega)$	0	×	0	0	0
$Q5(220\Omega)$	0	0	0	0	0
$Q6(200\Omega)$	0	0	0	0	0
Q7(180Ω)	0	0	0	0	0
Q8(160Ω)	0	0	0	0	0
Q9(140Ω)	0	0	0	0	0
Q10(120 Ω)	0	0	0	0	0
Q11(100 Ω)	0	0	0	0	0

表 B.2.2-3 B 社製 PCS の地絡検出可否

地絡位置	p6	p7	p8	р9	p1
	ро	þί	ро	рð	рı
抵抗値					0
$Q1(300\Omega)$	0	0	×	×	0
$\mathrm{Q2}(280\Omega)$	0	0	×	×	0
$Q3(260\Omega)$	0	0	0	×	0
$Q4(240\Omega)$	0	0	0	×	0
$\mathrm{Q}5(220\Omega)$	0	0	0	×	0
$\mathrm{Q6}(200\Omega)$	0	0	0	×	0
Q7(180Ω)	0	0	0	×	0
$Q8(160\Omega)$	0	0	0	×	0
Q9(140Ω)	0	0	0	0	0
Q10(120	0	0	0	0	0
Ω)					
Q11(100	0	0	0	0	0
Ω)					

表 B.2.2-4 C 社製 PCS の地絡検出可否

地絡位置 抵抗値	р6	р7	p8	р9	p1 0	
Q1(300Ω)	0	0	×	×	0	
$Q2(280\Omega)$	0	0	0	×	0	
$Q3(260\Omega)$	0	0	0	×	0	
$Q4(240\Omega)$	0	0	0	×	0	
$\mathrm{Q5}(220\Omega)$	0	0	0	×	0	
$Q6(200\Omega)$	0	0	0	0	0	
$Q7(180\Omega)$	0	0	0	0	0	
Q8(160Ω)	0	0	0	0	0	
Q9(140Ω)	0	0	0	0	0	
Q10(120	0	0	0	0	0	
Ω)						
Q11(100 Ω)	0	0	0	0	0	

【参考】

非絶縁型の住宅 PV システム用パワーコンディショナの地絡検出に不感帯が存在する原因は,以下の様に考えられる。住宅の単相 3 線式配線の中性線は B 種接地されていることから,U 相の対地電圧および V 相の対地電圧は共に振幅約 143V で振動している(101V の $\sqrt{2}$ 倍)。U 相電圧と V 相電圧の時間位相差は 180° であるため,U 相と V 相の間の電圧は,286V 程度の振幅となる。この電圧に対して電流を供給するため,インバータの正極側直流母線と,負極側直流母線の電圧は,320V 程度となるのが通常である。正極/負極が対称なフルブリッジ回路インバータによって,電力系統に対して交流電流を供給する結果,インバータの正極側直流母線の対地電位と,負極側直流母線の対地電位とは,大地を挟んで対称な電位になる。すなわち正極側,負極側直流母線の対地電位は,それぞれ ± 160 V 程度になる。ここで,インバータの負極側母線は,チョパー回路を通してそのまま太陽電池アレイ(または太陽電池ストリング)の負極に接続されている。したがって,太陽電池アレイ(または太陽電池ストリング)の負極の対地電位は,-160V 程度となる。換言すれば,太陽電池アレイ(または太陽電池ストリング)の負極より 160V だけ高電位の箇所は,大地とほぼ等電位になり,ここが地絡しても大地への電流はほとんど発生しない。住宅用パワーコンディショナは,零相電流の発生を監視することによって直流地絡を検出するため,直流地絡しても大地に電流が流れなければ,検出は困難である。したがって,太陽電池アレイ(または太陽電池ストリング)の負極より 160V だけ高電位の箇所は,地絡していても検出が困難である。(図 3.5.2-1)太陽電池の電圧は,出力電流によって異なる。パワーコンディショナが MPPT 動作中に負極から 160V 付近の箇所は,

パワーコンディションナ起動前には、負極との電位差がこれよりも大きい。また、パワーコンディショナが起動動作中には、インバータ母線の対地電位は変動する。すなわち、パワーコンディショナが運転中は地絡検出が困難であっても、起動動作中に地絡検出できる可能性がある。本検討ではこれを考慮し、パワーコンディショナ起動動作中に地絡検出できないかを調査したが、前述のとおりいずれの機種も検出不感帯を持っていた。

※ 交流B種接地側から見ると、次のようなイメージ、

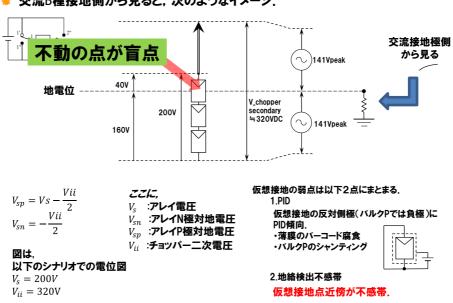


図 B.2.2-13 非絶縁型 PCS の地絡検出不感帯

b. 国内住宅用絶縁型パワーコンディショナの地絡検出不感帯の評価

絶縁型パワーコンディショナは地絡しても零相電流は発生しないため、零相電流検知以外の方法を具備しない限り、地絡を検出することが困難である。図 B.2.2-14 は、住宅用太陽光発電システムの現地調査を行った際に遭遇した直流地絡の実例である。モジュール下部に配線されているモジュールケーブルの一本が架台と治具とに挟まれ、ケーブル内の導線が露出し、架台に地絡していた。いうまでもなく、このケーブルが属しているストリングの絶縁抵抗は完全にゼロであった。この状態からさらに、同一ストリングであれ別ストリングであれ、別の地絡故障が生じれば、火災に至る危険性があった。また、調査者が架台やモジュールフレームに触れつつ不用意な点検作業を行った場合、あるいは未熟な点検業者や所有者がモジュールの水洗浄を行った場合は、本地絡箇所とは別電位の充電部への接触により感電していたかもしれない。さらに、もし架台を大地に接地している接地線が腐食断線する等、架台の接地が不良であれば、架台やモジュールのアルミフレームは大地と切り離された充電部と化しており、これと接触した場合は、インバータ動作に伴う容量性の感電も懸念される。

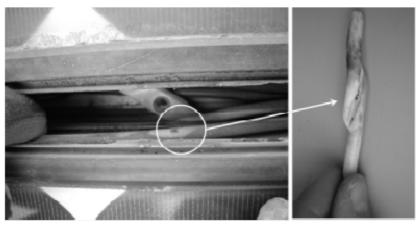


図 B.2.2-14 住宅用太陽光発電システムで遭遇した直流地絡の事例

また、この住宅用太陽光発電システムは故障発見までに13年が経過していたが、この間にPCSは直流地絡を検出していない。なお、図B.2.2-14から、短絡的にこのトラブルの原因を施工不良とみなす人々も多いが、施工不良を議論する前に、ヒューマンエラーや予期しがたい事由による故障の存在を前提として、地絡検出機能に問題が無いか検討することが必要である。一般家庭に設置される工業製品の設計という観点からは、ヒューマンエラーを誘発するような架台設計になっていないかも含め、総合的な安全対策を詳らかにすることが期待される。以下に、国内住宅用絶縁型パワーコンディショナの地絡検知機能を評価した結果を紹介する。

図 3.5.1-7~図 3.5.1-10 に国内製住宅用絶縁型パワーコンディショナの地絡検出不感帯実験回路を示す。パワーコンディショナを停止した状態で、図 B.2.2-15、図 B.2.2-16 および図 B.2.2-17 では正極を、図 B.2.2-18 では負極を、 20Ω で模擬第一地絡させた。

実験の結果、いずれの場合もパワーコンディショナは地絡を検出できずに起動した。

また、この状態で、模擬第一地絡させた極と逆極を、模擬第二地絡させた実験も行った。ここで使用したパワーコンディショナは、マルチストリング入力であったため、模擬第一地絡と模擬第二地絡とが、同じストリング内で発生する場合と、異なるストリングで発生する場合とが考えられる。図 B.2.2-15 および図 B.2.2-17 ではストリング内で、図 B.2.2-16 および図 B.2.2-18 ではストリングをまたいで二点地絡を発生させた。

実験の結果、いずれの場合もパワーコンディショナは地絡を検出できず、事故電流の継続が確認された。

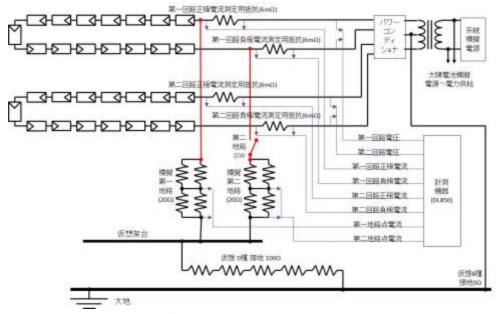


図 B.2.2-15 絶縁型 PCS 地絡検出機能評価用実験設備 (第1回路正極地絡 →PCS 起動 →第1回路負極地絡)

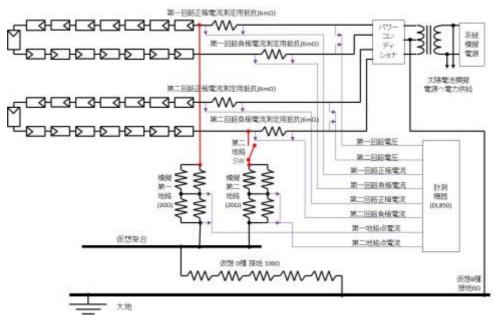


図 B.2.2-16 絶縁型 PCS 地絡検出機能評価用実験設備 (第1回路正極地絡 →PCS 起動 →第2回路負極地絡)

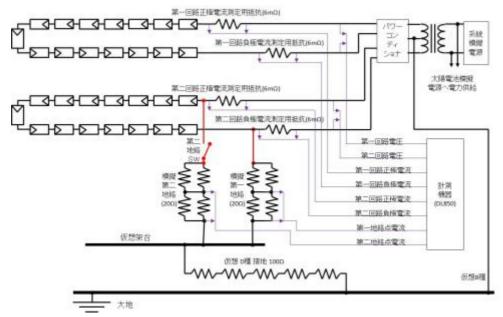


図 B.2.2-17 絶縁型 PCS 地絡検出機能評価用実験設備 (第2回路負極地絡 →PCS 起動 →第2回路正極地絡)

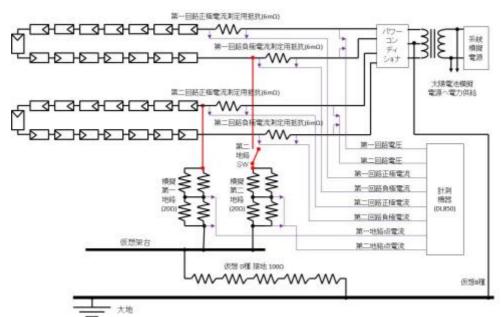


図 B.2.2-18 絶縁型 PCS 地絡検出機能評価用実験設備 (第2回路正極地絡 →PCS 起動 →第1回路負極地絡)

c. 国内住宅用パワーコンディショナ地絡検出不感帯の評価結果まとめ

これらの結果からわかるように、国内製パワーコンディショナは、絶縁型、非絶縁型いずれの場合も、地絡検出機能に検出不感帯があり、第一地絡故障を検出できない恐れがある。従って、米国接地システムの場合と同様のメカニズム(①第一地絡故障の発生→②地絡検出不感帯のため地絡が看過され運転継続→③第二地絡故障の発生→④地絡が検出されても事故電流を遮断不可能)によって地絡火災が発生する恐れがある。なかんずく今回評価した、国内住宅用絶縁パワーコンディショナは、全領域が検出不感帯であり、あらゆる箇所で地絡を全く検出できない。この様なパワーコンディショナを使用した絶縁型太陽光発電システムは一他の地絡検出装置を併用しない限り一米国接地システムよりも地絡火災の危険性が高いと言える。「国内システムは施工品質が高いから安全」という想像は、図 B.2.2-14 によって否定される。また地絡には、図 B.2.2-14 に示した架台へのケーブルの噛み込み以外にも、様々な原因が考えられる。

③ 国内非絶縁システムにおける地絡検出不感帯の詳細

国内絶縁型パワーコンディショナに地絡検出機能を具備していない機種があり、その場合は、一地絡 検出を別途行わない限り一第一地絡が看過され第二地絡により発災する危険性が、米国接地システムよ りも高いことが判明した。本項では、国内非絶縁パワーコンディショナが有している地絡検出不感帯の 危険性を検討する。

ただし、国内非絶縁パワーコンディショナ内蔵の地絡検出機能に頼ったシステムが、地絡検出不感帯を有し、米国事故と同様のシナリオによる事故の恐れをはらんでいることは上述のとおりである。従って何らかの対策が必要であることは既に明らかである。本項は、その危険性をより詳細に説明することによって、状況の喫緊性の理解を得るために作成されたものである。

a. 検出不感帯の日米比較

国内非絶縁型パワーコンディショナの地絡検出不感帯を米国接地システムのそれと比較する。米国接地システム(図 B.2.2-19)において、接地電位と地絡箇所の電位差をV、絶縁抵抗をRとし、電路の抵抗を無視する。

米国において,大型(250kW 以上)のシステムにおいては,接地に使用されるヒューズ定格は,5A 以下である。この場合,5A<V/R すなわち R<V/5A となることが,地絡検出される条件である。すなわち,この条件では接地箇所と等電位での地絡は検出困難であり,地絡箇所と大地との間に 20V の電位差がある場合でも,4 Ω にまで絶縁が低下した時にようやく地絡が検出される。また,米国において,小型(25kW 以下)のシステムにおいては,接地に使用されるヒューズ定格は,1A 以下である。この場合,地絡箇所と大地との間に 20V の電位差がある場合でも,20 Ω にまで絶縁低下した時にようやく地絡検出される。これらの値(4 Ω , 20 Ω)は,表 3.5.1·1~表 3.5.1·3 に示した値より小さい。このことからは,米国接地システムの方が,国内非絶縁システムより危険であると考えられる。

しかしながら、国内非絶縁システムの地絡検出感度は、図 3.5.1-6 より明らかなとおり D 種接地の良否に左右される。最も極端な場合として接地が失われている場合を考えると、いかなる直流地絡も検出が困難である。これに対し、米国接地システム(図 B.2.2-19)は TN 方式であるため、地絡時は Equipment Grounding Conductor を経由してヒューズに地絡電流が流れ、その状況は接地の良否に影響されない。すなわち、地絡検出の成否は接地の良否に影響されない。この考察より、国内システムは、米国接地システムには無い不安要素を含んでおり、接地が不良の場合は地絡検出できない危険性が米国接地システ

ムの場合よりも高いと考えられる。

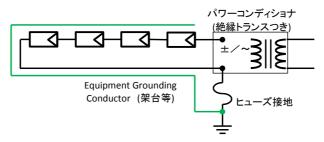


図 B.2.2-19 直流がヒューズ接地されたシステム(通常運転時)

また、国内の接地抵抗は、C種接地、D種接地とも $500\,\Omega$ 以下に緩和される場合がある(電技解釈第 17条第 3 項および同条第 4 項)。この緩和規程によって接地がなされている場合、零相電流の検出閾値を $100\,\mathrm{mA}$ とすると、接地電位 $\pm 50\,\mathrm{V}$ の範囲では、直流電路が架台に完全地絡(絶縁抵抗が 0)していても検出が困難である。例えば、開放電圧 $30\,\mathrm{V}$ 、最大出力動作電圧 $24\,\mathrm{V}$ のモジュール 7 直列からなるストリングを考えると、下表のとおり、正極からモジュール 3 枚の範囲が検出不感帯になり、この範囲では完全地絡していても検出され難いと予期される。これに対し米国接地システムにおいては、完全地絡の検出に失敗する箇所は接地電位に限られている。この考察より、接地抵抗が $500\,\Omega$ に緩和されていて、太陽電池回路の開放電圧が $210\,\mathrm{V}$ またはこれよりやや低い国内非接地システムは、米国接地システムより完全地絡が看過される範囲が広い。すなわちこのシステムにおいて、地絡火災の危険は喫緊の課題である。

表 B.2.2-5 D 種接地 500Ω, Voc30V,Vpm24V モジュール 7 直列システムの完全地絡検出不感帯

完全地絡	PCS 起動直後		MPPT 動作時		完全地絡
(絶縁 0Ω)	負極から	対地	負極から	対地	(絶縁 0Ω)
の位置	の電位	電位	の電位	電位	検出の成否
正極端	210V	+50V	168V	+8V	検出不可
1-2 枚目間	180V	-20V	144V	-16V	検出不可
2-3枚目間	150V	-10V	120V	-40V	検出不可
3-4 枚目間	120V	-40V	96V	-64V	検出可能
4-5 枚目間	90V	-70V	72V	-88V	検出可能
5-6枚目間	60V	-100V	48V	-112V	検出可能
6-7枚目間	30V	-130V	24V	-136V	検出可能
負極端	0V	-160V	0V	-160V	検出可能

b. 地絡検出/遮断方式の日米比較(補足)

本項においては、しばしば言われる「米国のシステムは直流が接地されているから危険、日本は安全」という認識を検討する。NEC(National Electrical Code) 2014 の 690.41 は、太陽電池アレイを、大地との関係において、次の何れかに適合させることを要求している。

- NEC690.35 に適合する、非接地システム
- NEC690.5 に適合する、2 線式接地システムまたは 2 線式インピーダンス接地システム
- NEC690.5 に適合する,接地バイポーラーシステムまたはインピーダンス接地バイポーラーシステム
- NEC250.4(A)に適合するシステム

NEC690.35 は、太陽電池アレイを非接地とするための要件として、遮断手段、過電流保護、漏電監視、使用導体、蓄電池、警告の表示を定めている。NEC690.5 は、漏電検出、遮断、事故回路の分離、警告の表示を定めている。また、NEC250.4(A)は、回路の接地とボンディング、保護導体の接地とボンディング、漏電流路の考え方を定めている。

この様に米国においても NEC2014 では、上記①に従い直流回路を接地しないことが可能である。それ 以前、NEC2005~NEC2011 においても、非接地太陽電池アレイは例外として認められていたが、NEC2014 では例外扱いではなく、正式に採りあげられた。また、インピーダンス(直流なので抵抗)を介して接 地することは、NEC2011 には記載されていなかったが、上記②③のとおり NEC2014 では認められた。NEC における太陽電池直流回路の接地については、以下に説明されている。

参考文献:Photovoltaic System Grounding, J. C. Wiles, Jr, Solar ABCs Report (2012)

しかしながら、非接地回路が認められたとはいえ、米国における過去のシステムは直流回路が接地されており、今も直流電路が接地される場合が多い。それゆえ米国内の多くのシステムにおいては、接地された箇所と電位が異なる箇所での直流地絡故障は、地絡アークを生じせしめる。ただし、ここで発生するアークは、直流電路の接地に使用されているヒューズを溶断させることによって、消弧できるものである。換言すれば、活線接地であるが故に第一地絡故障がアークを発生させる問題に対して、米国接地システムは対策済であると言える。一方、国内非絶縁システムは交流側が接地されているので、米国接地システムと同様、第一地絡故障がアークを発生させ得る。これに対して、国内非接地システムは、パワーコンディショナが零相電流を常時監視し、検出時には停止することで、対策を講じていると言える。表 XX と図にその状況を比較した。

日本(非絶縁システム) 米国 ① 接地箇所 直流側 交流側 ② 地絡検出 零相電流監視(パワーコンディショナが機能 接地箇所の電流監視 の方法 を内蔵) ③ 地絡電流 D種(またはC種)接地点−大地−B種接地点 大地、接地点を経由しない の経路 を経由 ④ 地絡検出時 パワーコンディショナ停止 直流ヒューズの溶断 の遮断方法 ⑤ 回路図

表 XX 直流地絡検出/遮断方式の日米比較

表XXについて説明する。

① 接地箇所:

日本の非絶縁システムの直流回路は接地されていないが、パワーコンディショナを介して電気的に つながっている交流側が接地される。これに対して、米国接地システムは直流回路のいずれかの箇 所が接地される。

② 地絡検出の方法:

日本の非絶縁システムにおける地絡電流は、D 種(または C 種)接地点から B 種接地点に向かう大地の中を往路とすれば、交流側から直流側への帰路は、パワーコンディショナを経由する。これが正負間の電流バランスの崩れ(または U 相 V 相間の電流バランスの崩れ)、すなわち零相電流としてパワーコンディショナによって検出される。これに対して、米国接地システムにおける地絡電流は、直接ヒューズを通過し、ヒューズの溶断によって検出/遮断される。

③ 地絡電流の経路:

日本の非絶縁システムにおける地絡電流は、架台の接地(C 種または D 種)—大地—B 種接地の全ての箇所を経由するが、米国接地システムにおける地絡電流は、大地も接地点も通過することなく流れる。これは、接地方式の違いによる(国内は TT 方式、米国は TN 法式)。

④ 地絡検出時の遮断方法:

日本の非絶縁システムにおける地絡電流は、パワーコンディショナの停止によって遮断されるが、 米国接地システムにおける地絡電流は、ヒューズが溶断することによって遮断される。

両システムの優劣は、地絡検出の成否と、遮断の成否によって比較されなければならない。 国内非接地システムは、零相電流の検出閾値が 100mA 程度、遮断時間は1秒以下である。これに対して、米国において PV 直流回路の接地に使用される DC ヒューズの定格は、UL1741???に示されている。小型のパワーコンディショナを使用する場合でも、1A 未満のであれば良く、米国接地システム の電流検出感度は、国内設置システムよりも鈍いと言える(表 XXX)。さらに米国接地システムが不利な 点として、直流ヒューズは1秒では溶断し難いことも挙げられる。

表 XXX 米国において直流回路の接地に使用されるヒューズの要件

パワーコンディショナ	地絡電流検出閾値の
DC 定格(kW)	最大値(A)
0-25	1
25-50	2
50-100	3
100-250	4
250~	5

従って、第一地絡故障によって直ちに発生する漏洩電流に起因する事故の検知/遮断について言うならば、確かに米国接地システムよりも、日本の非絶縁システムの方が優れていると言うことができる。この意味において、「米国のシステムは直流が接地されているから危険」という認識を、間違いであると言い切ることはできない。

しかしながら、米国において発生した地絡火災は、第一地絡故障によって発生する漏洩電流に起因するものではない。第一地絡故障を検出出来ぬまま第二地絡故障発生が発生した結果、第一故障点を往路、第二故障点を帰路とする事故電流の遮断ができなくなったことが事故の原因である。事故回避の成否を決める性能は、漏洩電流(A)の検出能力ではなく、絶縁低下(Ω)の検出能力である。

国内非絶縁パワーコンディショナ、米国接地システムが、第一地絡故障を検出できる条件は、それぞれ以下の通りである。(ここでは国内非接地システムの零相電流検出感度を $100 \, \text{mA}$ とし、米国接地システムのヒューズ定格を $1 \, \text{A}$ とした。)

★国内非絶縁パワーコンディショナ:

|地絡位置の対地電位|/ (D種(または C種)接地抵抗+B種接地抵抗+大地抵抗+絶縁抵抗)>100mA ★米国接地システム

|地絡位置対地電位|/(接地導体の抵抗+絶縁抵抗)>1A

これらの不等式は、絶縁抵抗と地絡位置対地電位の関係を表しており、その状況を図 B.2.2-20~B.2.2-22 に図示した。

ただし、B 種接地抵抗、大地の抵抗、接地導体の抵抗を無視した。

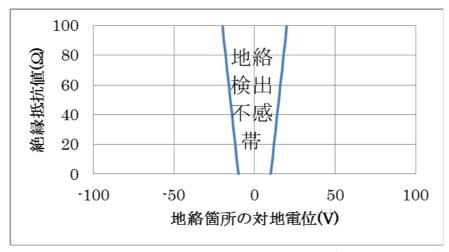


図 B.2.2-20 国内非接地システムの地絡検出不感帯(D 種接地 100Ω)

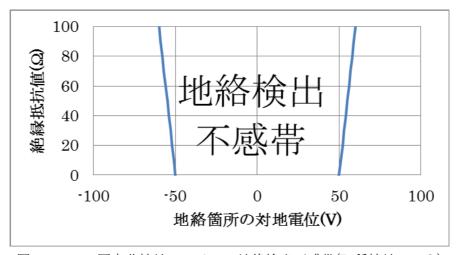


図 B.2.2-21 国内非接地システムの地絡検出不感帯(D 種接地 $500\,\Omega$)

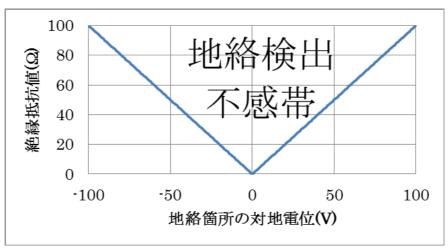


図 B.2.2-22 米国システムの地絡検出可能範囲

これらの比較より、大地の電位と大きく異なっている位置での地絡は、国内非接地システムの方が鋭敏に検出できるが、大地と電位が近い位置での地絡は、国内接地システムの方が検出し難いことが分かる。

「国内非絶縁システムの直流回路の対地電位は、パワーコンディショナの動作状況や、太陽電池の温度によって変動するため、いずれかの状態において地絡が検出される」ことは考えられる。しかし、図B.2.2-21には、幅100Vにおよぶ検出不感帯があり、対地電位が変動してもこの不感帯は解消され難いと思われる。

また、「米国接地システムは、太陽電池負極が大地と等電位になっているため、検出不感帯の空間的な広がりが大きく、第一地絡故障が看過される危険性が高い」という指摘もある。しかし国内非絶縁システムにおいても、図 B.2.2-21 に示す検出不感帯が、太陽電池正極付近に存在した場合には、負極同様範囲の広い正極が検出不感帯となる。

c. 対地静電容量について

本項は、地絡検出方式の優劣を比較するものではない。国内非絶縁システムによる零相電流監視、米国接地システムにおける漏洩電流監視、いずれの方式であっても、感度向上のために電流検出閾値を下げると、地絡していないのに地絡と判断してしまう、「不要動作」が懸念される。本項は不要動作の大きな原因である対地静電容量について説明する。

25kW 以下の米国接地システムにおいて、地絡検出に使用されるヒューズは、UL 規格によれば 1A 以下である。この電流値を下げれば検出感度を鋭敏にすることができる。例として、図 B.2.2-23 には、この閾値を 0.1A とした場合の状況を示す。図 B.2.2-22 の場合よりも検出不感帯が狭くなっていることがわかる。ただし、電流定格の小さなヒューズを使用すると、ヒューズ自体の抵抗が大きくなるため電流が制限され、却って検出感度を損なうことが報告されている(Analysis of Fuses for "Blind Spot" Ground Fault Detection in Photovoltaic Power Systems, J. Flicker, J. Johnson, Solar ABCs Report(2013).)。しかしこの問題は、ヒューズの代わりに電流監視装置と遮断器の組み合わせを使用することによって解決可能であり、米国接地システムにおいて、地絡電流の検出感度を向上させることは原理的に可能である。

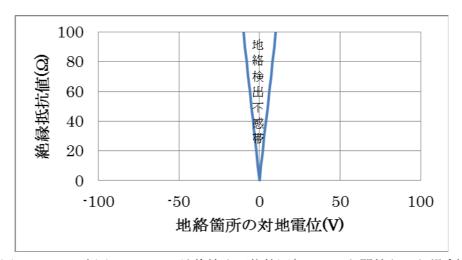


図 B.2.2-23 米国システムの地絡検出可能範囲(100mA を閾値とした場合)

一方,国内非接地システムにおいて,零相電流検出の閾値を小さくすると,検出器のドリフトのため,零相電流を誤検出する懸念がある。交流の零相電流は Z-CT によって検出できるが,直流の零相電流の検出にはホール素子等が必要であり,交流の場合に比べてドリフトの問題を生じやすい。しかし,この

問題も検出デバイスの進歩やコストをかけることによって解決し得る課題であり、国内非接地システムにおいても、地絡電流の検出感度を向上させることは原理的に可能である。

しかし、日米いずれの方式においても、検出感度を鋭敏にした場合、測定対象物であるアレイの性質そのものによる、不要動作の増加が懸念される。これは、直流回路と大地との間に存在する寄生静電容量(対地静電容量)に起因する不要動作が懸念されるためである。対地静電容量に起因する漏洩電流の大きさは、対地静電容量の大きさと、対地電位の変動周波数と振幅とで決まる。すなわち、周波数 f の対地電位変動に対して、対地静電容量 C は、 2π f C のアドミタンスとして振る舞い、このアドミタンスと、太陽電池対地電位の交流成分との積に等しい漏洩電流が発生する。この大きさが閾値を超えた場合、国内非絶縁システムではE L B の解列またはパワーコンディショナによる地絡検出が発生し、米国接地システムでは検出ヒューズが溶断する。

そこで、参考のため、国内におけるアレイの対地静電容量の測定および計算例を以下に示す。

NEDO 委託研究事業「大規模電力供給用太陽光発電系統安定化等実証研究」の中に,各 PV モジュールの静電容量について報告がある。表に示す値はモジュールメーカから確認された値である。この例では,対地静電容量は大きい場合(PV3)で $0.71\,\mu$ F であり,50Hz におけるインピーダンスは 4.5k Ω となる。太陽電池の対地電位の交流成分が 100V に及んだ場合は,この場合の零相電流は 22mA であり,ELB の動作閾値に対して無視しがたい値である。

表 1 パネル別静電容量およびケーブル長

Table 1. specifications of PV, capacity and cable lengthl

				静電容量		電源	施設枚
PVNo.	種別	形式	乾燥時	受光面 水濡れ	受 光 面 5%食塩	ケーブ ル長	数数
PV1	CIS					142	144
PV2	薄膜					142	294
PV3	単結晶	HIP-186N1,186W	280nF		710nF	31	54
PV4	単結晶	NT-84L5H,84W	340pF	640pF		5	120
PV5	単結晶					9	48
PV6	多結晶	PV-MG167EF,167W				D	60
PV7	多結晶	SPG1786T-02E,178.6W	2.6pF	3.3pF		43	56 60
PV8	多結晶	ND-Q7L5H,167W	340pF	640pF		40	60
PV9	アモルファス					88	102
PV10	アモルファス	GNB311,60W	0.34nF	19.3nF	69.6nF	00	170

松野,稚内メガソーラプロジェクト(2)~太陽電池静電容量による漏れ電流検証結果~,平成21年電気学会全国大会,2009

また下表には、周波数 50 Hz における太陽電池モジュールの静電容量の測定結果が示されている。

表2 太陽電池モジュールの静電容量

Table 2 Earth capacitance of PV module

Maker	PV types	Capacitance[nF]
A	Polycrystal	0.2
	Polycrystal	0.3
	Polycrystal	1.5
В	Monocrystal	0.4
	Monocrystal	0.7
	Microcrystalline	1.9
С	Monocrystal	1.6
	Polycrystal	0.4
D	Polycrystal	0.5
	Polycrystal	0.5
	Polycrystal	0.4
E	Microcrystalline	0.7
	Amorphous	0.6
F	CIGS	1.6
	CIGS	1.6
G	CIGS	1.5
	Monocrystal	0.7
Н	Polycrystal	0.5

酒井他、太陽光発電システムが導入された交流配電系統における漏電遮断器の動作整定、

上記メーカーG の CIGS 太陽電池は、出力 125W であり、対地静電容量は、12pF/W となる。5kW システムの対地静電容量は $0.06\,\mu$ F と見積もられ、問題になる値ではないが、50kW システムの対地静電容量は $0.6\,\mu$ F に達し、無視することはできない

対地静電容量が、地絡検出機能に影響を及ぼすか否かは、対地静電容量の値だけではなく、太陽電池 アレイの対地電位の挙動にもよる。対地電位が変動しなければ、静電容量に起因する電流は発生せず、基本的に問題を生じない。このためには、パワーコンディショナメーカーが指定した結線方式に従うことが必要である。たとえば、スター結線の交流回路用に作られたパワーコンディショナを、 Δ 結線の交流回路に接続してはならない。

b. 交流電力システムとの比較

上記(1)(2)では、太陽電池アレイにおける地絡が検出されない現象、換言すれば地絡検出の不 感帯の危険性について述べた。本文書は、地絡検出の不感帯があってはならないことを強く訴えるもの である。本項はこれに関連して、交流電気設備における地絡検出の不感帯が、太陽電池アレイにおける それほどは危険でないことを説明する。

交流電気設備において、接地相が地絡した場合を考えると、N 相の電流は正規の電路を取る In1 と、大地を経由する In2 に分流する(図 B.2.2-24)。ここで、In2 が漏洩電流として ELB によって検出されるが、In2 の経路には、B 種接地抵抗 Zb、D 種接地抵抗 Zd、地絡故障点の抵抗 Z1 が直列に配置されており、これらの合計値が線路抵抗になる。従って In2<<In1 となり、ELB が動作しない場合があると推定される。換言すれば、交流 ELB にも地絡検出の不感帯は存在する。それにも拘わらず、本文書が、太陽電池アレイにおける地絡検出不感帯をことさらに採りあげる理由は以下の通りである。

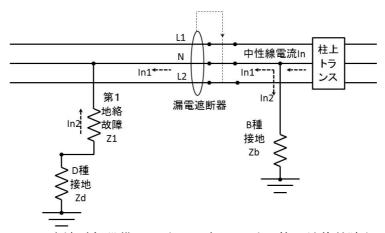


図 B.2.2-24 交流電気設備における N 相における第一地絡故障と不検出

図 B.2.2-24 に示した状態から,L2 相で第 2 地絡故障が発生すると,L2 相からの漏洩電流は,大地に流れる成分と,N 相に直ちに戻る成分に分かれる。その状態を図 B.2.2-25 に示した。ここで,大地に流れる成分が漏電遮断器を動作させた場合,または N 相に戻る成分が過電流遮断器を動作させた場合は,図 B.2.2-26 のとおり設備は系統から解列されるため,安全化する。また,漏電遮断器,過電流遮断器のどちらもが不動作であった場合でも,元々の事故電流が小さければ火災に至る懸念は小さい。この観点から以下の 3 点が全て成り立つ場合が危険であるとして,その範囲を図 B.2.2-27 に示した。

- ★大地経由の電流が、ELBを動作させるために必要な30mAに満たない
- ★N 相経緯の電流が、過電流遮断器を動作させるために必要は 50A に満たない
- ★地絡電流が、500mA を超えている

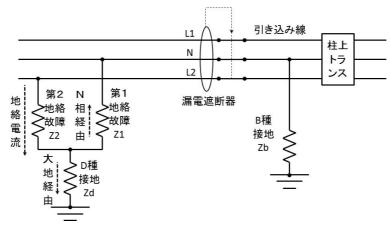


図 B.2.2-25 交流電気設備における第二地絡故障(解列前)

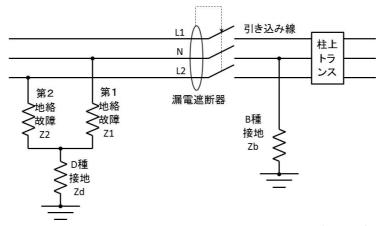


図 B.2.2-26 交流電気設備における第二地絡故障(解列後)

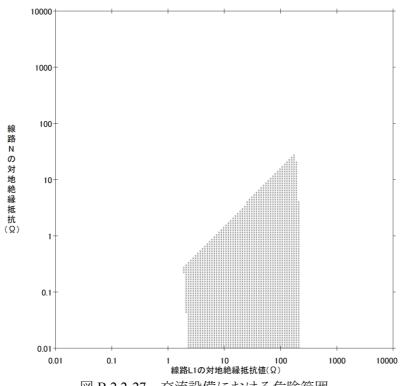


図 B.2.2-27 交流設備における危険範囲

図 B.2.2-27 は,D 種接地抵抗を 500Ω として作成されたものであるが,D 種接地抵抗がこれより小さいと,危険範囲はこれより狭くなる。

この結果に比べて、太陽光発電直流電気回路の地絡検出不感帯の危険性は明らかである。

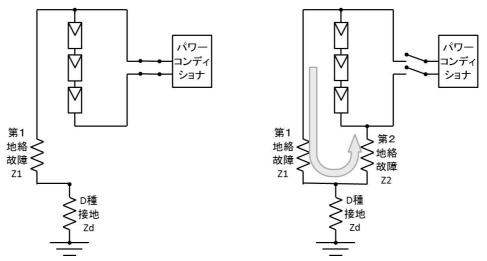


図 B.2.2-28 太陽光発電直流回路における 図 B.2.2-29 太陽光発電直流回路における 不感帯での地絡故障 第2地絡故障と事故電流の継続

図 B.2.2-28 には太陽光発電直流回路の検出不感帯における第一地絡故障を、図 B.2.2-29 には、続いて発生した逆極での第二地絡故障を示す。図 B.2.2-29 では、故障が検出されてパワーコンディショナは停止しているが、図 B.2.2-26 と異なり電流は継続している。図 B.2.2-29 において流れる電流が許容値を超えていれば危険と判断される太陽電池の電圧を 200V とし、電流閾値を 500mA とすると、この条件は、 $Z1+Z2<400\Omega$ が危険領域であり、それを図 B.2.2-30 に示した。

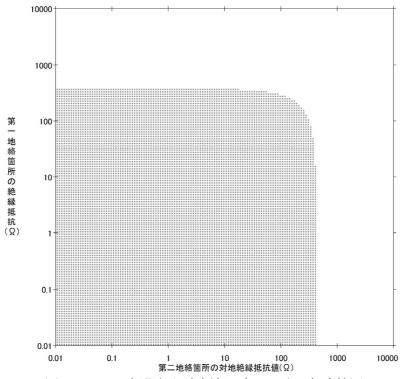


図 B.2.2-30 太陽光発電直流回路における危険範囲

図 B.2.2-30 の範囲は、D 種接地抵抗の値に依存しない。図 B.2.2-27 と図 B.2.2-30 を比較すれば、太陽光発電直流回路の危険性は明白である。また、交流設備の多点地絡事故については、図 B.2.2-27 の範囲内の事故であっても、人がブレーカーを開放すれば無電流化・無電圧化することかできるのに対して、太陽光発電の直流電気回路の多点地絡事故に対しては、人が操作をしても無電流化・無電圧化することが困難であることからも、交流電気設備に比較して、太陽光発電直流回路の地絡は危険であると言える。

さらに、交流電気設備は屋内に配置され、雨風雪等から守られているのに対して、太陽光発電直流回路 は屋外に数十年に亘って曝さる点からも、太陽光発電直流回路の地絡には注意しなければならない。

交流電気設備は定期的に絶縁検査がなされ、この時に ELB では地絡を見つけにくい箇所(中性線)の絶縁低下を見出すことができる。ところが、太陽光発電の直流電気回路は、地絡について交流電気設備よりも注意が必要であるにもかかわらず、定期的な絶縁検査が義務付けられていない。本文書ではこの状況に鑑み、太陽光発電直流回路の絶縁ついて、交流電気設備の場合を上回る監視を求める。

④ 検出不感帯以外の課題

これまで、地絡検出の不感帯について指摘してきた。しかし、地絡検出に成功したにも関わらず、地絡火災に至った例が知られている(D.Collier, T. Key: Electrical fault protection for a large photovoltaic power plant inverter, IEEE Photovoltaic Specialists Conference, Vol2 1035(1988))。これは、第一地絡を検出したものの、その場所を探している間に第二地絡が発生し、発災したケースである。太陽光発電設備は広大な面積に広がっているため、地絡箇所の探索に時間を要することは容易に想像できる。また、絶縁抵抗値の挙動は不安定であるため(山口富三雄、中村國臣:太陽電池モジュールの屋外暴露試験における絶縁抵抗変化と環境因子の関係、日本信頼性学会誌 24(4)、333 (2002))、地絡検出した後に絶縁が復活してしまい、地絡箇所の探索に失敗する懸念もある。これらを解決するためには、地絡検出と同時に地絡箇所を特定できることが好ましく、今後その様な機器およびシステムの開発と実用化が期待される。

地絡火災に関する課題としては、検査の頻度がある。国内では 50kW 未満の PV システムは保安検査の義務が無い。従って地絡火災からシステムを守る機能は、パワーコンディショナが具備する検出不感帯を有する地絡検出機能のみである。一方、50kW 以上の PV システムは自家用電気工作物として、1年に2回以上の点検が義務付けられており、この際に絶縁抵抗計を使用した絶縁検査が実際される場合が多い。しかし、第一地絡故障と第二地絡故障が半年未満の間で発生した場合、この検査頻度では事故を回避できない懸念がある。可能な限り頻繁に絶縁を検査することが好ましい。

上記を総合すると、地絡火災を防止するためには以下を備えることが好ましい

- (1)検出不感帯の無い地絡検出装置または方法
- (2)地絡検出と同時に地絡箇所を特定できる装置または方法
- (3)高頻度の検出のため、システムに常設できる装置

現実には、上記(1)~(3)を全て備えた装置は入手できないが、(1)と(2)を備えた装置や、(1)と(3)を備えた装置は入手可能である。従って、(1)~(3)を全て備えた装置の実用化に期待するとともに、当面はこれらを使用して事故防止を図ることが現実的である。

(1)と(2)を備えた装置の活用は、設備運用時になされる事である。一方、(1)と(3)を備えた装置の活用は、設備 設計において採用するとともに、それを踏まえた設備運用を決める必要がある。 これらについては、それぞれの章で説明する。

さらに具体的な地絡検出の課題としては、検出レベルや検出後の処理(例えば複数回検知で重故障扱い)、重故障リセットの方法等、一律の規格が存在しないことがある。このため、異常検出後の各社の対応方法もまちまちである。過去に直流地絡の誤動作が多かったこともあり、「火災へのハザード状態を示す非常に危険なエラー」と認識されていない場合があるのが現状である。今後、これらも含めて規格

化を行うなど、危険の認識と処置を徹底させる必要がある。

参考:関係する電技令および電技解釈

電技解釈 17条

【接地工事の種類及び施設方法】(省令第11条)

- 4 D 種接地工事は、次の各号によること。
- 一 接地抵抗値は, 100Ω (低圧電路において,地絡を生じた場合に0.5 秒以内に当該電路を自動的に 遮断する装置を施設するときは、 500Ω)以下であること。
- 二接地線は、第3項第二号の規定に準じること。

3 C 種接地工事は、次の各号によること。

- 二 接地線は、次に適合するものであること。
 - イ 故障の際に流れる電流を安全に通じることができるものであること。
 - ロ ハに規定する場合を除き、引張強さ 0.39kN 以上の容易に腐食し難い金属線又は直径 1.6mm 以上の軟銅線であること。
 - ハ 移動して使用する電気機械器具の金属製外箱等に接地工事を施す場合において、可とう性を必要とする部分は、次のいずれかのものであること。
 - (イ) 多心コード又は多心キャブタイヤケーブルの1心であって、断面積が0.75mm2以上のもの
 - (ロ) 可とう性を有する軟銅より線であって、断面積が 1.25mm2 以上のもの

電技解釈解説 17条

第4項は,D種接地工事の施設方法を示している。D種接地工事は,300V以下の低圧用機器の金属製外箱等の接地(\rightarrow <u>第29条第1項</u>)など,漏電の際に,簡単なものでも接地工事を施してあれば,これによって感電等の危険を減少させることができる場合に施すもので,第一号において,接地抵抗値は 100Ω 以下とすることを示している。O47基準で,C種接地工事と同じく,低圧電路に漏電遮断器等の地絡遮断装置を施設してあれば,接地抵抗値を 500Ω まで緩和した。第二号では,D種接地工事の接地線の仕様は,C種接地工事に準じることを示している。

電技解釈 第29条

【機械器具の金属製外箱等の接地】(省令第10条,第11条)

第29条電路に施設する機械器具の金属製の台及び外箱(以下この条において「金属製外箱等」という。)(外箱のない変圧器又は計器用変成器にあっては、鉄心)には、使用電圧の区分に応じ、29·1表に規定する接地工事を施すこと。ただし、外箱を充電して使用する機械器具に人が触れるおそれがないようにさくなどを設けて施設する場合又は絶縁台を設けて施設する場合は、この限りでない。

7.29 T	130

機械器具の使用電圧の区分		接地工事
低圧	3000以下	D種接地工事
16/1:	300V超過	C種接地工事
高圧又は特別高圧		A種接地工事

- 2 機械器具が小出力発電設備である燃料電池発電設備である場合を除き、次の各号のいずれかに該当する場合は、第1項の規定によらないことができる。
 - 一 交流の対地電圧が 150V 以下又は直流の使用電圧が 300V 以下の機械器具を, 乾燥した場所に施設 する場合
 - 二 低圧用の機械器具を乾燥した木製の床その他これに類する絶縁性のものの上で取り扱うように施 設する場合

- 三 電気用品安全法の適用を受ける2 重絶縁の構造の機械器具を施設する場合
- 四 低圧用の機械器具に電気を供給する電路の電源側に絶縁変圧器(2次側線間電圧が300V以下であって、容量が3kVA以下のものに限る。)を施設し、かつ、当該絶縁変圧器の負荷側の電路を接地しない場合
- 五 水気のある場所以外の場所に施設する低圧用の機械器具に電気を供給する電路に、電気用品安全 法の適用を受ける漏電遮断器(定格感度電流が 15mA 以下、動作時間が 0.1 秒以下の電流動作型の ものに限る。)を施設する場合
- 六 金属製外箱等の周囲に適当な絶縁台を設ける場合
- 七 外箱のない計器用変成器がゴム、合成樹脂その他の絶縁物で被覆したものである場合
- 八 低圧用若しくは高圧用の機械器具,第26条に規定する配電用変圧器若しくはこれに接続する電線 に施設する機械器具又は第108条に規定する特別高圧架空電線路の電路に施設する機械器具を,木 柱その他これに類する絶縁性のものの上であって,人が触れるおそれがない高さに施設する場合
- 3 高圧ケーブルに接続される高圧用の機械器具の金属製外箱等の接地は、日本電気技術規格委員会規格 JESC E2019 (2009)「高圧ケーブルの遮へい層による高圧用の機械器具の鉄台及び外箱の連接接地」の「2. 技術的規定」により施設することができる。
- 4 太陽電池モジュールに接続する直流電路に施設する機械器具であって, 使用電圧が 300V を超え 450V 以下のものの金属製外箱等に施す C 種接地工事の接地抵抗値は,次の各号に適合する場合は,<u>第</u> 17 条弟 3 項第一号の規定によらず,100 Ω 以下とすることができる。
 - 一 直流電路は、非接地であること。
 - 二 直流電路に接続する逆変換装置の交流側に、絶縁変圧器を施設すること。
 - 三 太陽電池モジュールの合計出力は、10kW以下であること。
 - 四 直流電路に機械器具(太陽電池モジュール,第 200 条第 2 項第一号ロ及びハに規定する器具,逆変換装置及び避雷器を除く。)を施設しないこと。

電技解釈解説 第29条【機械器具の金属製外箱等の接地】

第4項は、出力電圧450Vの太陽電池アレイの出現に伴い(従来、太陽電池アレイの出力電圧は300V以下であったが、出力電圧を上げることで、逆変換装置の昇圧比が下がり、高効率化や製品の小型化が図れる。)、これに接続する電路に施設される機器の鉄台や金属性外箱については、接地抵抗値10Ω以下のC種接地工事を施すことが必要であったが、一般家庭等でC種接地抵抗値を満足することは困難な場合があることから、18解釈で新たに設けた規定である。

第一号のとおり直流電路が非接地であり、かつ、第二号のとおり逆変換装置の交流側に絶縁変圧器が施設されていれば、直流電路部分に人が触れても地絡電流の帰路が構成されないため感電防止に有効であるが、対地静電容量が大きいと電撃による危害のおそれがあるため、対地静電容量を制限する観点から、第三号及び第四号についても条件としている。UL1741 (Inverters, Converters, Controllers and InterconnectionSystem Equipment for Use with Distributed Energy Resources)の11. Electric Shockによると、直流電圧 450V で充電された静電容量から受ける電撃は、静電容量が 1.99 μ F以下であれば人体に問題ないとされており、出力 10kW の太陽電池モジュールの対地静電容量は、実測の結果 0.25 μ F程度であることから、第三号及び第四号を満たすものについては、接地抵抗値を緩和しても安全と考えられる。

(3) 並列アーク・直列アーク

米国 Sacramento の太陽光発電システムは、1987年に直流の主開閉器付近で、火災を生じた。原因は、PCS 収納盤内における、正負極の極間短絡であり、適切な地絡検出装置があったとしても回避不可能であった。故障点とアレイの間を遮断してアークを終息させるまでの37分間に、設備は著しい被害を受けた。

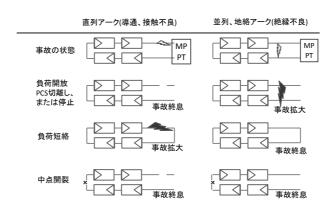
日本において 2013 年 9 月,接続箱火災が発生した。本件では,PCS が直流地絡エラーを発して停止したが,接続箱の焼損は継続し,太陽電池側のケーブルを人が切断して漸く事故を終息させた。もし,事故原因を地絡に求めるならば,(a)多点地絡の同時発生,(b)正極または負極における第 1 地絡故障の検出失敗 の何れかを仮定しなければならない。しかし,これらの仮定を置くよりも,並列アークまたは直列アークとして事故発生し,その結果として地絡が発生し検出された,と考える方が蓋然性が高い。

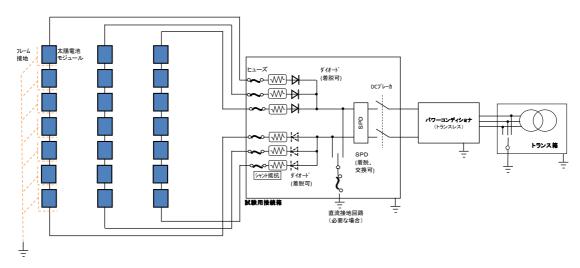
図 B.2.2-31 直並列アーク事故例

Solar Amarica Board for Codes and Standards は、Bakersfield 火災、Mount Holly 火災を検討し、対策案の一つに、アーク検出遮断装置(以下 AFCI)を挙げた。2011 年の National Electrical Code(以下 NEC)は、AFCI の設置を義務化付けた。その結果、米国の新設太陽光発電システムでは、アーク検出時にはアレイと負荷(PCS) の間が切り離されることになった。

しかし、上に挙げた事例で AFCI が有効と期待されるのは、「直列アーク」の場合のみである。「地絡アーク」では、PCS に流れていた電流が故障点に集中することによる事故拡大が懸念される。「並列アーク」では、短絡故障が、AFCI と PCS の間で発生した場合のみ有効であり、それ以外の箇所で発生した場合は事故拡大が懸念される(図 B.2.2-31)。そこで従前から、アークの種類を判別し、その結果に応じて、負荷を開放または短絡することが提案されてきた。しかし、アーク種類の判別は容易ではなく、"アークの種類判別"という手段が長らく検討段階にある。この他、マイクロコンバータ等を使用し、アーク検出時はアレイをモジュール単位にまで解線する方法も候補であるが、"半導体スイッチによる遮断"という手段の信頼性が課題である。いずれにしても、信頼性の高いアーク終息法は未だ確立されていない。

解決方法の一例として、アーク検出時に、アークの種類を判別せず、ストリングの途中を高信頼性の機械的接点によって遮断すること(中点開裂)を提案する(図 32 下段)。本法は、多様な事故モードにおいて"事故電流遮断"の目的を達成できる。なお、全ての並列モード事故が、アークを伴うとは限らないため、電圧低下を検出して並列事故を監視する方法の併用も検討に値すると考える。




図 B.2.2-32 事故電流遮断の方法

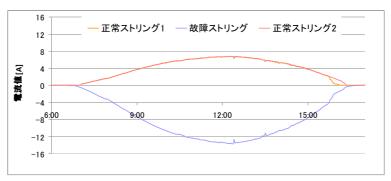
付録 B. 2. 3 過電流による火災危険

PV 火災の対策を考えるうえで、火災の発生メカニズム分析は最も重要である。これまでの調査検討の結果、PV 火災の要因分析としてバイパスルート開放や地絡短絡事故が起点となることが確認されている。しかし、事故発生からの延焼性については、十分にメカニズムが分かっていない。例えば、ベーカーズフィールドやマウントホーリーでの火災では、ストリングと思われる1列の太陽電池モジュールが燃え落ちている事実がある。東京消防庁では、「太陽光発電設備に係る防火安全対策」の検討結果として、太陽電池の延焼性について試験を実施したが、PV モジュールの延焼性については確認されていない。ただし、東京消防庁の試験は、別要因で発火した際の PV モジュールへの延焼性を模擬したものであり、PV モジュール内の電気火災を発火要因と想定したものではない。そこで、新エネルギー等共通基盤整備促進事業 太陽光発電システムの直流電気安全性に関する基盤整備(経済産業省/三菱総合研究所 以下、本研究)では、PV モジュールに故障電流が通電した状態での試験が実施することとした。以下、逆電流による PV モジュールの延焼性試験結果を紹介する。

(1) 定常運転時の逆電流の変化

逆流防止素子がなく、故障ストリングの直列枚数が低下した場合の逆電流及び PV モジュールの温度 特性を測定するため、地絡・短絡等の模擬可能な 7 直列 3 並列の実験回路を構築した。B.2.3-1 に実験回 路及び太陽電池アレイの設置状況を、表 001 に実験に使用した PV モジュールの諸元をそれぞれ示す。 なお、「逆流防止素子がなく」は、多点地絡等の事故を模擬したものであり、建設時から不使用という 意味ではない。

(a) 試験回路

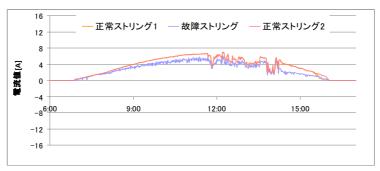


(b)太陽電池アレイ 図 B.2.3-1 逆電流試験用太陽光発電システム

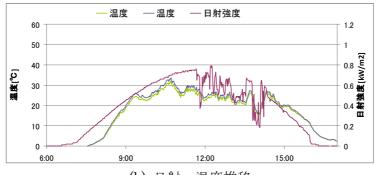
表 B.2.3-1 燃焼性試験に使用した PV モジュールの諸元

	公称值	
	モジュール	アレイ
最大電力(Pmax)	200 (W)	4200 (W)
短絡電流(Isc)	9.28 (A)	27.84 (A)
開放電圧(Voc)	29.5 (V)	206.5 (V)
最大出力動作電流(Ipmax)	8.48 (A)	25.44 (A)
最大出力動作電圧(Vpmax)	23.6 (V)	165.2 (V)

B.2.3-2 に PCS 停止時の逆電流の推移を B.2.3-3 に PCS 連系運転中の逆電流の推移をそれぞれ示す。PCS 停止中は、逆電流は正常ストリング数の電流に正常ストリング数(n=2)を乗じた値となったが、PCS 連系運転中は、故障ストリングも含めて全て発電領域で運転が行なわれた。この現象は、B.2.3-4 により説明できる。B.2.3-4 は日射強度 770 W/m^2 、PV モジュール温度 41 $^\circ$ Cの際の直列枚数毎の発電領域及び逆電流領域における I-V 特性である。故障ストリング枚数毎の PCS 停止時の動作点は、正常ストリングが青丸、故障ストリングが赤丸の点となり、常に「故障ストリング電流=正常ストリング電流×n」となる。この事故電流は、B.2.3-5 に示すとおり、PCS 回路が連系されていないため、直流回路の中で完結するように形成される。一方、PCS 連系運転時は、動作点を短絡側に移行させることにより、正常ストリングの発電電力は低下するものの、故障ストリングの動作点が発電領域に入るため、システムとしては最大電力が得られる。ただし、故障ストリングの直列枚数が少ないと、PCS の動作に必要な最低直流電圧を下回ることによるため、本試験でも故障ストリング枚数が 1 枚、2 枚の場合は連系運転ができなかった。



(a) 電流推移



(b) 日射、温度推移

図 B.2.3-2 電流、日射・温度推移 (故障ストリング直列枚数 4, PCS 停止)

(a) 電流推移

(b) 日射、温度推移

図B.2.3-3 試験No.5 電流、日射・温度推移 (故障ストリング直列枚数5, PCS連系運転)

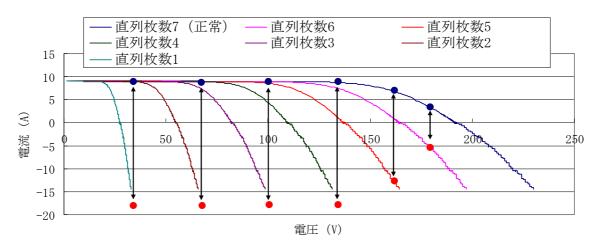
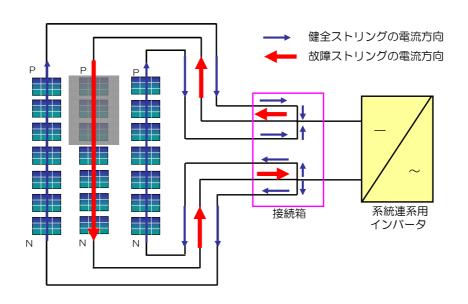
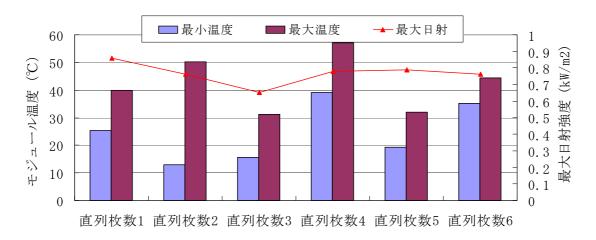
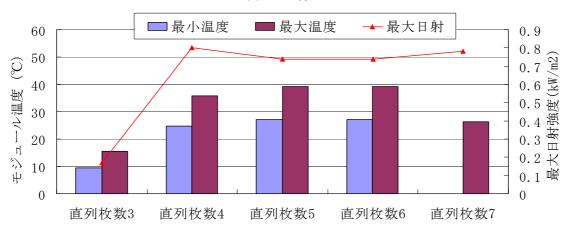


図 B.2.3-4 直列枚数毎の I-V 特性


図 B.2.3-5 PCS 停止時の故障ストリングの直列枚数低下時の電流の流れ

次に、逆電流通電時の PV モジュールの温度上昇について実測を行なった。今回の試験では、PV モジュールの安全性認証規格 IEC61730-2 で規定された「PV モジュールの最大過電流保護定格の 135% で 2 時間通電する逆電流過負荷試験 MST26」と同レベルの逆電流を通電しており、温度上昇による PV モジュールへの悪影響を懸念したためである。

図 B.2.3-6 に PCS 停止時及び連系運転中の直列枚数毎の 10 時から 14 時の最大・最小温度を示す。なお、連系運転は通常動作であるが、参考として記載するものである。図 B.2.3-6 より、逆電流通電による最大温度は、直列枚数 4 枚時の 60 であり、最大・最小の温度差としては、直列枚数 2 枚時の 37 でが最高であった。以上の結果は一例ではあるものの、住宅規模の PV システムでは、逆電流による燃焼等のリスクは少ないと言える。

(b) PCS 連系運転

図B.2.3-6 PVモジュール裏面温度 (PCS運転時/停止時)

(2) PV モジュール燃焼 (温度上昇) に必要な逆電流値

(1)では、住宅用 PV システムを模擬した構成にて、逆電流による PV モジュールの温度上昇を実測したが、燃焼に至るようなレベルではないことが確認できた。よって、中規模、大規模太陽光発電所を想定して、逆電流を増加させた場合の PV モジュールへの影響について実験を行なった。図 B.2.3-7 に試験回路を、図 B.2.3-8 に PV モジュールへの熱電対の取り付け状況をそれぞれ示す。

この試験設備を用いて、PV モジュール燃焼に必要な逆電流値を把握するため、以下のステップで試験を実施した。

試験 1: 逆電流を 30A から 10A 刻みで徐々に増加させた場合の PV モジュールの温度推移を調査。ただし、通電電流は、温度が上昇しなくなるまで一定とし、目視にて温度が上昇しないと判断した段階で、10A 上昇させる。

試験 2:試験 1 の結果を踏まえて、大電流(80A)一定通電時の PV モジュールの温度推移を調査。

図 B.2.3-9 に試験 1 の結果を示す。図 B.2.3-9 より、逆電流を 60A まで増加させ 30 分ほど経過した時点で、計測点 1,2,5,6 の温度が低下し始めた。また、計測点 3,4 については、逆電流 70A まで上昇し続けたものの、150 C以上の温度上昇傾向が確認できなかったため、試験を中止した。次に、新品の PV モジュールを用いて、逆電流 80A (約 $Isc \times 8$) 通電時の温度上昇について検証を実施した。図 B.2.3-10 に試

験 2 の結果を示す。図 B.2.3-10 より、逆電流 80A 通電時も 70A と同様に計測点 1,2,5,6 の温度が低下するものの、計測点 3,4 は 110^{\circ}</sub> 程度で推移し、これ以上温度上昇が起きないことが確認できた。よって、通電により PV モジュールを燃焼させるためには、 $Isc \times 8$ よりも大きい逆電流が必要と判断した。

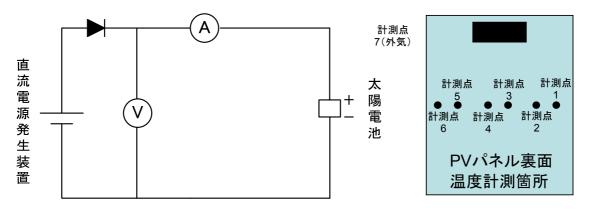


図 B.2.3-7 逆電流通電時の PV モジュール温度上昇試験回路

図 B.2.3-8 PV モジュールへの熱電対取り付け状況

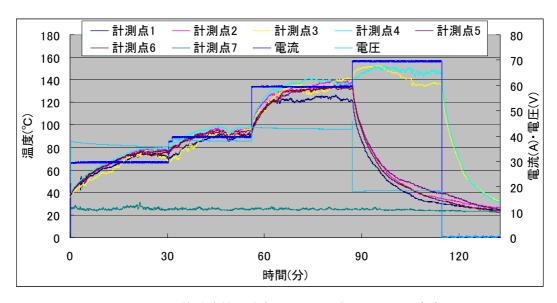


図 B.2.3-9 逆電流値の増加と PV モジュールの温度変化

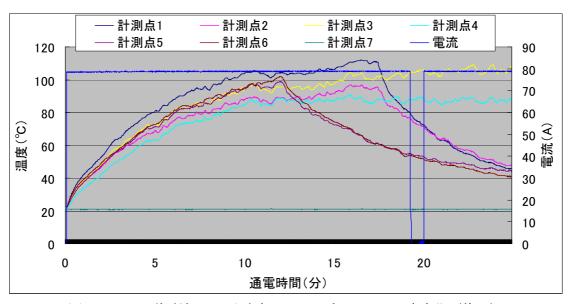


図 B.2.3-10 逆電流 80A 通電時の PV モジュールの温度変化(修正)

(3) PV モジュール燃焼/延焼性試験

これまでの結果を踏まえて、PV モジュールの燃焼/延焼性試験を実施した。これまでとは異なり、試験を実施するためには燃焼が可能な実験フィールドが必要であるため、千葉市消防学校の実験フィールドを借用し、逆電流による PV モジュールの燃焼/延焼性について検証を行なった。代表として、正常ストリングの模擬として定格電圧 400V の直流電源を、故障ストリングの模擬として 2 枚直列接続した PV モジュールを使用し、故障ストリングに対して逆電流を 88A 通電した場合の試験結果を紹介する。

図 B.2.3-11 に試験前の PV モジュール設置状況を、図 B.2.3-12 に試験回路を、図 B.2.3-13 に試験中の PV モジュールの推移を、図 B.2.3-14 に試験終了後の PV モジュールをそれぞれ示す。図 B.2.3-13 より、逆電流通電開始から約 33 分後に PV モジュール②が発火したことが確認できる。また、発火点はジャンクションボックス付近であり、発火要因は、逆電流による温度上昇を起因とした PV モジュール内の 回路溶断によるアークであった。ただし、発火と同時に回路開放により逆電流の通電が終了したことも あり、モジュールの一部が燃焼したところで炎が弱くなり、図 B.2.3-14 から分かるように燃焼しなかった PV モジュールのダメージは大きくなく、延焼性までは確認できなかった。

同様の試験を複数回実施したが、いずれの試験でも延焼性までは確認できなかった。しかし、本試験で使用した直流電源の定格電圧は 400V であり、実際のフィールドで使用されている中規模・大規模システムよりも直流電圧が低い。多点地絡発生時や、直流電圧の高電圧化に伴い回路溶断時にアークが継続するようなケースでは、燃焼規模が本試験よりも大きくなることが予想されるため、注意が必要である。通常時は、接続箱に内蔵された逆流防止素子(ブロッキングダイオード/ヒューズ)によりこの現象は発生しないが、多点地絡などの事故が発生した場合等逆流防止素子では保護しきれない事故が発生する可能性もある。大規模火災対策としては、DC電圧の低電圧化、同一接続箱の並列接続数の制限などが考えられる。

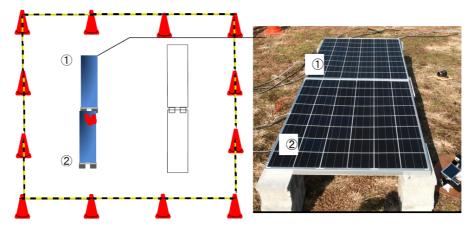


図 B.2.3-11 試験前の PV モジュール設置状況

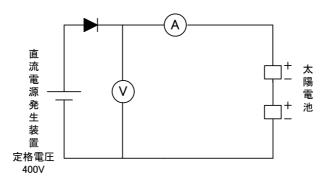
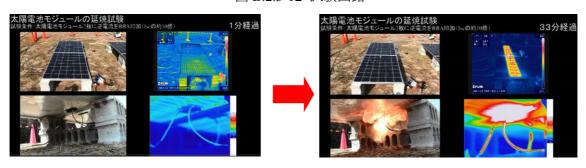



図 B.2.3-12 試験回路

(a) 試験開始時

(b) 通電終了時

図 B.2.3-13 試験中の PV モジュールの推移

(a) PV モジュール②

(b) PV モジュール①図 B.2.3-14 試験終了後の PV モジュール

付録 B. 2. 4 延焼性による火災危険

太陽光発電設備の火災発生は未然に抑止することが重要である。次に、事故発生時は速やかに検知し、 事故点を遮断することが重要である。しかしながら、事故発生の不確実性をゼロにすることは困難であ る。事故発生時には、その事故を拡大させないことが重要となる。

火災事故拡大を防ぐためには、太陽光発電設備の各構成要素において、延焼を防ぐことが重要となる。 以下に各要素における延焼性に関する事故例や研究例を示す。

(1) 太陽電池モジュール

太陽電池モジュールの延焼性については、東京消防庁や消防研究センターの実験例がある。実験では、 最大4枚での試験を実施したが、モジュール間の延焼は見られなかった。他方、能美防災による実験では、 は、模擬屋根を利用したケースでは、一部延焼が見られた。

参考文献 1: 東京消防庁

参考文献 2:消防研究センター

参考文献 3: 能美防災、太陽エネルギー学会, 2014

(2)接続箱

接続箱の延焼性については、金属製において延焼を防げた事例が多数ある。一方、樹脂製において周辺の接続箱に延焼した事故事例がある。樹脂製を利用する場合は、延焼性の設計について十分に注意が必要である。

図 B2.4.5-1 金属製における事故拡大防止例

(3) ケーブル

ケーブルの延焼性については、接続箱内のガタースペースにおける延焼や、屋根から接続箱までの垂直に下したケーブルにおいて延焼した事例がある。正負極を並列に配線した場合、正負極間短絡による直流アークも併発する可能性もあるため、アークが要因による延焼であった可能性も考えられる。

付録 B.3 太陽光発電の火災事例に関する情報

太陽光発電システムは、施工の取り付け不良、初期不良、経年使用による劣化等により、火災につながる可能性があり、国内においても火災事例が報告されている。また、一般的な電気機器とは異なり、太陽光発電システムが設置された建築物において火災が発生した場合、太陽電池モジュールに日射があると発電をし続けるため、系統からの電力を遮断していても、鎮火後の再出火や感電などの危険性があるという点にも注意が必要となる。

ここでは、これまでに報告された主な太陽光発電システムによる火災事例について整理する。

付録 B. 3.1 国内事例

国内での太陽光発電システムによる火災事例を表 xx に示す。表 xx は、消費者庁 「事故情報データバンクシステム」、経済産業省「製品事故情報報告・公表制度」、製品評価技術基盤機構「事故情報データベース」より作成分析された結果を集約した発火部位数を纏めたリストである。表 xx より、発火件数は PCS が最も多いことが確認できた。PCS 発火の具体的要因として、機器不良と断定された 5 件については、メーカーが自主的に無償点検等必要な再発防止対策が行なわれたケースが多い。また、ケーブルの接続不良による焼損や屋内用 PCS を屋外に近い環境に設置したことにより水が浸入しトラッキングが発生など施工不良による事故も発生している。その他小動物の侵入、雷等原因が特定されているものもあるが、大部分が原因不明となっているのも特徴の一つである。火災の規模としては、一部焼損痕、焼損、周辺も焼損(外部からの延焼含む)等様々であった。

PV モジュールは、バイパスダイオードの開放故障と干した布団が作った部分影による焼損や延長ケーブルの接続不良によるスパークの発生等が発生している。影や断線など同様の条件が揃えば、メガソーラでも火災発生のリスクがある。また、報告事例はないが、逆電流を起因とした場合はメガソーラのほうが住宅よりも事故の規模が大きくなることが予想される。

接続箱、ケーブル、発電モニタの発火要因も大別すると、断線や雷の侵入等となっており、PV モジュールや PCS と同様の傾向であった。接続箱で機器不良が 2 件発生しているが、いずれも再発防止対策が取られている。

なお、表 xx は全て住宅で発生した太陽光発電システムが対象となっており、メガソーラは含まれていない。ただし、このデータがメガソーラが安全であることを意味するわけではない。日本のメガソーラはまだ歴史が浅く今後導入量の増加に伴い、事故が発生する危険性があることは容易に想像できる。

表 B.3.1-1 太陽光発電システム要因別発火件数

			件数		
発火部位	W 55 +	設置	製品には起因しな	製品に起因しない	原因不明
	機器不良	施工不良	い偶発的事故	使用者の感受性	調査中
PV モジュール	2		1		5
PCS	5	4	3	1	11
接続箱	2	1			3
ケーブル					2
発電モニタ			1		

(出典)消費者庁 「事故情報データバンクシステム」、経済産業省「製品事故情報報告・公表制度」、 製品評価技術基盤機構「事故情報データベース」より作成

事故情報データバンクシステム

http://www.jikojoho.go.jp/ai national/

経済産業省「製品事故情報報告・公表制度」

http://www.meti.go.jp/product_safety/consumer/lecture.html

製品評価技術基盤機構「事故情報データベース」

http://www.nite.go.jp/jiko/jikojohou/index.html

製品評価技術基盤機構 最新事故情報

http://www.nite.go.jp/jiko/jikojohou/information/index.html

付録 B. 3. 2 海外事例

欧米では、太陽光発電システムによる火災事故が発生しており、地絡の非検知などの課題が挙げられている。また、太陽光発電システムが火災の直接的な原因でない場合でも、消防隊員の感電の危険から消防活動が制限され、結果として火災の拡大につながっている事例もある。

以下に米国で発生した主な太陽光発電システムの火災事例を示す。

表 B.3.2-1 米国における太陽光発電システムの火災事例

発生	場所	概要	
2008年6月	Sedona,AZ	 構造火災、負傷者有り アークがフェンス支柱を燃焼 DC 電線管が複数の場所で接地 AC サービスが木杭の火災により停止 	
2009 年 2 月	Los Angeles,C A	● UL リストにないモジュールの使用● 標準を満たしていない設置方法	
2009 年 3 月	Simi Valley BIPV Fire	● バイパスダイオードの欠陥が原因 の可能性	
2009 年 4 月	Bakersfiel d Fire	 ● モジュール及びデッキへの損傷 ● 地絡の非検出 ● 設置、試運転の課題 ● 緊急時対応要員が危険レベルについて認識不足 	
2009 年 7月	Concord,C A	車庫火災オーナーにより切断機が覆われており、切断されるまでシステムは起動	
2010 年 4 月	Greenbelt, Md	 ● 住居 PV システム、48V DC グリッド接続システム ● げっ歯類による損傷及びアレイ下の残骸の可能性 	
	San Diego, CA	● 住居 PV システムにおける住居側面のインバーター火災 ● DC 切断の欠如によって、消火が遅れた	
2010 年 5 月	Fresno, CA	● 駐車場格子システム上の統合器の火災	
2011 年	Yorba Linda, CA	● 新住居開発における BIPV 火災 ● 消防隊が屋根を破壊し、コンダクターを切った	
4 月	Mt Holly, NC	★国 Gypsum の屋上 PV システム地絡火災の非検知	

		いくつかの統合器への火災損傷全ての評価が終わるまで、Duke Energy の 10MW が非接続となった
2011 年 12 月	Redlands, CA	タイヤ倉庫上の 1.2MW システム火災が 4 つのモジュールと統合器を隔離
2012 年 1 月	Waltham, MA	● 小学校の屋上 PV システム統合器の火災
2013 年 5 月	La Farge,WI	 Organic Valley 本社で発生した PV 火災、建物は木材フレーム、リサイクル断熱材を使用 消防士の感電の恐れから、通気活動をせず、火災が拡大 後に、屋根全体が火災、PV システム、金属屋根の組み合わせによって通電していたことが判明
2013 年 9 月	Delanco, NJ	 Dietz and Watson の工場での火災、屋根に 1.6MW の太陽光発電が設置 消防士の感電の恐れから屋根上で消防活動が実施できず、結果的に30,000m2 が全焼

参考文献: PV Fire-Related Case Studies,2011 年 2 月 15 日、PV Fire Safety Milestones: Progress Report, San Jose Fire Dept. 2012 年 2 月 1 日、Commercial Roof-Mounted Photovoltaic System Installation Best Practices Review and All Hazard Assessment, The Fire Protection Research Foundation, 2014 年 2 月 13 日などより作成

ドイツの研究機関の調査 10)によれば、表 1 に示すように 1995 年から 2012 年の間にドイツにおいて PV システムに関わる火災事故が約 400 件発生している。そのうち、PV システムが出火原因ではないが PV システムが何らかの被害を受けたものが 220 件、PV システムが出火原因とされているものが約 180 件あったと報告されている。

ドイツやイタリアでも大規模倉庫や住居屋根上の太陽光発電システムにおける出火事例が報告されている。 感電の恐れから消火が進まず被害が拡大する例も見られる。

表 B.3.2-2 欧州における太陽光発電システムの火災事例

時期	国	概要	写真
2012 年 4 月	ドイツ	 Goch にある倉庫上の結晶系モジュールの太陽光発電システムから出火 120人の消防が出動したが、屋上の4,000m2が焼損した。 	

2011年5月	ドイツ	 ● 商用車メーカー (Evobus GmbH) の結晶型の太陽光発電システムが設置されている倉庫屋根から出火 ● 原因は、太陽光発電システムを通じた電気系統の不良によるものとされている。 ● 納入業者が駆けつけ、すぐにシステムを停止させたため、鎮火は早く、人身被害はなかった。
2011年4月	ドイツ	 Rulfingen の結晶系モジュールの太陽光発電システムが設置されている農家倉庫屋根が夜間に出火 夜間でも、灯光器や炎により、太陽光発電システムが発電しており、放水時の感電危機可能性があった。 この火災により建物は全焼し、約35万ユーロ(5,000万円)相当の被害があった。
2010年9月	イタリア	 Sovicille の工業用建物の屋根に設置されている薄膜型モジュールの太陽光発電システムの火災 再出火を防止するために赤外線カメラを使用して高温部を監視し鎮火した。
2009年2月	ドイツ	 Schwerinsdorf の結晶系モジュールの太陽光発電システムが設置されている一般住宅から出火 消防が 70 人出動したが、最終的に住居は燃え尽きた。 報道は感電危険を懸念した消防隊員が消火拒否をしたと報じている。

参考文献:各種記事、吉富電気資料等より作成

付録 B. 4 消防隊員の保護に関する技術情報

付録 B. 4.1 消防活動時における消火, 残火処理時の危険

太陽光発電システムの火災発生時における消防活動における感電危険に関して、海外では UL の実験や欧州のプロジェクトにおいて各種検討が行われている。その中では、以下のような観点で検討が行われている。

- ・ 放水時における感電リの危険
- ・ ケーブル等の導体を切断した時の感電の危険
- ・ 夜間照明による発電特性と感電の危険
- ・ 火炎による発電特性と感電の危険
- ・ 残火処理における再出火防止と遮光方法

また,その中で欧米の消防は,暫定的に感電防止策を提案している。例えば,消防隊員の防具として, 手袋や靴等の防具に電気絶縁性を持たせることを提案し,放水ルールとして,スプレーとフルウォータ ーそれぞれの近接可能距離の算出をしている。また、消火開始前に活線区間を最小化するために、太陽電池アレイに近い位置での直流電路開放方法なども策定している。さらに、PVS所有者に対して、建物に太陽光発電システムの標識を掲示することや、配線経路情報として、消防に配線図を提出することも定められている。

国内では、総務省消防庁消防研究センターが、欧米における検討項目の追試的な実験を行っている。また同センターは、燃焼性ガスの分析結果や、モジュール落下の危険要因として火炎の熱で脱強化された太陽電池モジュールのガラスが大きな破片や鋭利は破片となる可能性など、新たな知見も示している。これら各種実験結果から得られた消防活動時の注意事項が報告書にまとめられている。特に「太陽光発電システム火災に関する消防活動上の注意事項・留意点一覧(住宅火災編)」として消防活動開始前、消火活動中、火炎鎮圧後の3項目にわたって具体的な留意事項がまとめられている。

また、東京消防庁も消防隊員が曝される危険に関する調査を行っており、「太陽光発電設備に係る防火安全対策検討部会」の検討結果を公表している。その中では、具体的な燃焼実験の結果も示されており、太陽電池モジュール間の延焼性については、通電状態ではないが、延焼の危険が低いことを示している。また、太陽光発電システムの設置場所の留意点や太陽光発電システムの存在を示すための表示を推奨することにも言及している。これらの検討結果は「太陽光発電設備に係る防火安全対策の指導基準について」として具体的な基準を定めている。現状は、本基準は義務的な扱いではなく、指導となっているが、消防サイドから提示された具体的な基準としては国内初の文書である。

参考文献

UL, Firefighter Safety and Photovoltaic Installations Research Project, 2011

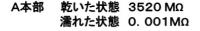
http://www.pv-brandsicherheit.de/ (2014/8 最終アクセス)

消防庁消防研究センター, 太陽光発電システム火災と消防活動における安全対策,消防研究技術資料 83 号, 平成 26 (2014) 年 3 月

東京消防庁、太陽光発電設備にかかる防火安全対策の検討結果、2014

(1) 感電・火傷の危険性の評価


国内では、消防研究センターおよび東京消防庁を中心に各種実験などが行われている。


①消防隊員装備品の抵抗測定消防研究センターでは、消防隊員の装備しては、一般に手袋と長靴を着用している。乾いた状態と濡れた状態での測定などを行い、基本的な情報をまとめている。そこからの知見により以下がまとめられている。

・濡れた現場では、断熱材や壁なども導電性が高くなる。・太陽光発電システムの配線が脱落などで建物部材に触れていると建物部材を通して電流が流れてくる可能性が高まる。その部分に濡れた手袋で触れたため感電した。

消防隊員が使用していた手袋(ケブラー製)を水道水で濡らして,手袋の内側から外側への抵抗を絶縁抵抗計(250V)測定すると $1k\Omega$ 以下であった。太陽光発電システムが 100V を発電していたとすると $1k\Omega$ の抵抗に流れる電流は 100mA となり,人体にとっては痙攣がおきる電流値となり,屋根や梯子からの危険がある。

絶縁抵抗計で測定 電圧 250 V 測定レンジ 4000 MΩ 電極 アルミシート(幅約 5cm)

消防隊の長靴 抵抗測定 測定不能(OL)

B本部 乾いた状態 0.710 MΩ 濡れた状態 0.001MΩ

図 B4.1-1 消防隊員装備品の抵抗測定実験写真 出所)田村裕之,消防研究センター資料

②放水による感電の危険

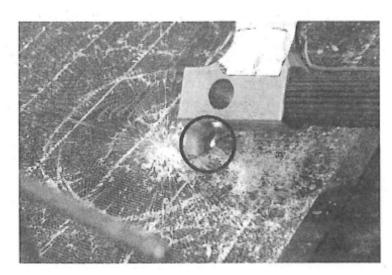
放水による感電の危険については、 $UL^{(1)}$ がさまざまな条件の実験を行っている。放水のノズルタイプ、距離、水圧、電圧、水質などの影響などを実験的に調査しており、1000V では約6m以上離れることが推奨されている。また、接続箱への放水により危険な感電レベルであることも実験から示唆されている。ドイツのグループでも同様な実験が行われており(2)ドイツの消防向けガイドラインでは、噴霧放水では、 $1\sim5m$ 、フル放水では $5\sim10m$ の距離での放水が推奨されている。また、インバータからのバックサージに対する注意喚起もされている(ただし、感電の危険は放水時のみではない)。

国内では、直接的な実験は行っていないが、消防庁からの事務連絡文書には、噴霧状等の放水が推奨されている⁽³⁾。

参考文献:

- (1) Underwriters Laboratories Inc, Firefighter Safety and Photovoltaic Installations Research Project, 2011
- (2) Horst Thiem, Elektrische Gefährdung der Feuerwehren durch PV Anlagen (Messung El. Leitfähigkeit) Workshop BMU Brandschutz in Köln Einsatz an Photovoltaikanlagen Informationen für Einsatzkräfte von Feuerwehren und technischen Hilfsdiensten
- (3) 消防庁 事務連絡;太陽光発電システムを設置した一般住宅の火災における消防活動上の留意点等について、平成25年3月26日

③装備品による装置破壊時の感電の危険


消防隊員が、消火活動時または残火処理時に機器を破壊することは容易に想定される。ULでは、ケーブルカッター、グラスファイバ製の斧、電動鋸、チェーンソーによりケーブルを切断する時や太陽電池モジュールを破壊する時の感電の危険が評価されている。その結果、活線状態ではその場で火が出る可能性があることや、配管切断時に正負両方のケーブルが同時に切断される時に危険性が高いことを報告している。

国内では消防研究センターがベンケイ(消防隊員が利用する破壊のための打工具)により太陽電池モジュールを打ち抜いた実験などをおこなっている。実験の結果、破壊器具とモジュール間での通電がおき 過熱による炎が確認された報告がある。

出所)Underwriters Laboratories Inc, Firefighter Safety and Photovoltaic Installations Research Project, 2011

図 B4.1-2 正負 2 本のケーブルを通した非金属製管路の切断時の実験

出所) 塚目,太陽光発電システムの火災における消防活動上の危険性, 日本火災学会講演討論会予稿,平成25年 図 B4.1-3 ベンケイによる太陽電池破壊実験

④消火活動に利用する照明による発電からの感電の危険

夜間の消火活動中には,照明車等による光照射により太陽電池が発電する可能性がある。それによる感電の危険が評価されている。ULでは,1500W、8台の照明車と実アレイを利用した実験などを行っている。また,欧州でもベルン大学が,照明車を利用した実アレイでの実験を行っている。両者の実験ともに,条件によっては,電圧が数百 V,電流も 100mA を超える可能性を示し,注意されるべき危険なレベルにあることが報告されている。

Fig. 1:Situation at the PV generator of sub-plant West of the PV test plant of BFH-TI under illumination by two floodlights of 1 kW on Oct. 27th, 2010 by the fire brigade of the town of Burgdorf (minimum distance 7 m).

At the modules very close to the floodlights the illumination in the module plane is quite high (up to 150 Lux). At the modules and arrays in higher distances it is much lower.

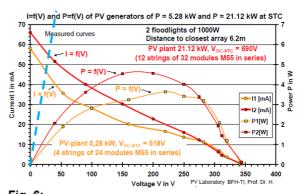


Fig. 6: I-V- und P-V-curves of a PV-array of 21.1 kWp consisting of 384 modules Siemens M55 (12 strings of 32 modules in series) under illumination by one or two halogen floodlights of 1 kW at a distance of 6.2 m in comparison to fig. 3 and 4.

出典: Heinrich Haeberlin, PV and Fire Brigade Safety: No Panic, but Realistic Assessment of Danger and Possible Countermeasures, 2011, EPVSEC

図 B4.1-4 照明による感電の危険(ベルン大学の実験結果例)

⑤火炎からの放射による発電に起因する感電の危険

火災発生時には、その火炎によって電圧・電流が発生する可能性があり、その発電に関連する危険が考えられる。国内では消防研究センターが太陽電池モジュールの火炎曝露による挙動の確認として?、ヘプタンなどの火炎から放射される光によるモジュールの発電性状況を調査している(1)。燃料のほかに、放射光の分光スペクトルの分析などもおこなわれている。この結果、火炎には赤外域の成分が多いため照度のわりに大きな出力電圧が得られることから、火炎からの放射が届くモジュールでは、夜間でも発電していると推定されるため、消防活動においては感電への注意が必要であると報告している。

UL においても、木製パレットによる火炎を $15\sim75$ フィート離した距離でも高い感電危険が発生する可能性を報告している $^{(2)}$ 。

参考文献

- (1)塚目,太陽光発電システムの火災における消防活動上の危険性,日本火災学会講演討論会予稿,平成25年
- (2) Underwriters Laboratories Inc, Firefighter Safety and Photovoltaic Installations Research Project, 2011

⑥光遮蔽実験

感電リスクの防護策として太陽電池への入力エネルギーをもとより遮断することが最も有効な手段といえる。消防研究センターでは,カバーにより光遮断方法の実験を行っている。出力電圧は,ブルーシート 1 枚では $12\sim16\%$, ブルーシート 2 枚では $5\sim7\%$ にまで低下することを報告している。しかしながら,本実験に使用した光強度を?超える日射があった場合には,非遮光モジュールでは出力電圧が頭打ちになるが,ブルーシートで遮光したモジュールの出力電圧は最大電圧までの範囲で上昇することが予想される。このため,太陽高度が高く日射が強い場合には,遮光しても低い電圧低減効果しか得られない可能性があり,注意が必要であることを報告している。UL も同様な試験として,4 種類の市販の防水シートでの遮光試験を行っており,一部のシートでは有効な結果を得られたことが報告されている。また,発泡剤による遮光方法も UL により試行されているが,泡にすきまができることなどから,あまり有効な結果が得られなかったことが報告されている。同様な方法について国内では能美防災が検討を行っている (1)。

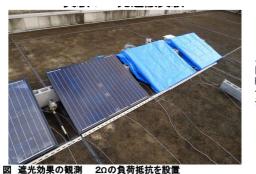


図 遮光効果の観測 2Ωの負荷抵抗を設置 (右から、ブルーシート2枚、ブルーシート1枚、普通モジュール)

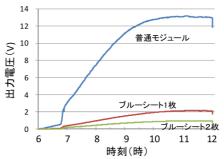
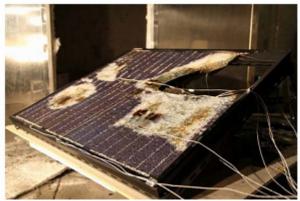


図 遮光による出力電圧の変化

図 B4.1-5 ブルーシートによる遮光実験

出所)消防庁 事務連絡;太陽光発電システムを設置した一般住宅の火災における 消防活動上の留意点等について,平成25年3月26日

参考文献


(1) 横田博之, 上野浩志, 山岸貴俊, 太陽光発電パネルの遮光方法,平成25度 日本太陽エネルギー学会・日本風力エネルギー学会予稿集

⑦燃焼による崩落,有毒ガス発生リスク評価

PV システムの燃焼時には太陽電池の崩落や架台の脱落、また、有毒ガス発生などの危険が想定される。消防研究センターでは、太陽電池モジュールの火炎暴露による挙動として、自己燃焼性やモジュールの部分脱落の状況などを実験的に観察している。バックシートにアルミシートを含む多層構造のものは燃え難いことや、モジュールが損傷を受けて出力電圧が低下し、もしくは出なくなっても、時間の経過を追って電圧が回復すること、また加熱されたガラスはフロートガラスのような割れ方をする場合があるため危険であることなどが報告されている。

ULは、PVの実規模燃焼実験を行っており、モジュールの下の炎の伝播、広がり方、熱によるモジュールの垂下、屋根の抜け落ちなどを報告している。特にケーブル被覆の燃焼で導体が露出し、配線状態を予測できないことから、予期しない場所にシステム電圧が印加される可能性があるため、危険な状態であることを報告している。

(a) 太陽電池モジュールの燃焼実験写真

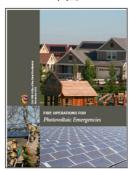
図 B4.1-6 太陽電池モジュールの燃焼実験写真

(b) 燃焼実験による太陽電池モジュールから脱落したガラス片写真 出所) 田村,太陽光発電システムを設置した住宅火災における消防活動について 照明による感電リスク,日本消防検定協会 検定協会だより

図 B4.1-7 実規模アレイによる燃焼実験

出所)Underwriters Laboratories Inc, Firefighter Safety and Photovoltaic Installations Research
Project, 2011

有毒ガスに関する報告は多くないが(1),消防研究センターは材質そのものの熱分解挙動を調べるために、窒素雰囲気中と空気中での熱分解物を分析している(1)。また、モジュールを加熱、燃焼した場合の生成ガスとの比較も実施している。一部の実験では、PVF由来と思われるフッ化水素や四フッ化ケイ素などが検出されている。また、モジュールを燃焼させた場合の生成ガスとして、加熱分解ガスと異なるものが得られたことも報告されており、今後も継続的な検討は必要と考えられる。


参考文献

- (1) NEDO 太陽光発電の信頼性向上に関する研究開発 (化合物太陽電池モジュールの環境対策の調査研究), 2000年
- (2) 塚目, 太陽光発電システムの火災における消防活動上の危険性, 火災学会講演討論会予稿, 平成 25 年

付録 B. 4. 2 各国の消防向けガイドライン

消防隊員が PV 火災の危険について,正しい知識を持つ必要があり,急速に PV 導入量が拡大している導入先進国では,消防向けにガイドラインが作成されている。ガイドラインには, PV システムが設置されている建物において消防隊員が消火活動等を実施する際の危険や注意すべき点などが取り纏められている。

米国

フランス

ドイツ

オーストラリア

出所)

- Fire Operations for Photovoltaic Emergency ,CAL FIRE http://osfm.fire.ca.gov/training/pdf/Photovoltaics/Fire%20Ops%20PV%20lo%20resl.pdf
- Einsatz an Photovoltaikanlagen,DFV
 http://publikationen.dguv.de/dguv/pdf/10002/i-8657.pdf
- MaÎtriseR LE Risque LiÉ Aux Install Ations PhotovoltaÏques,CEA
 http://www2.ademe.fr/servlet/getDoc?cid=96&m=3&id=91168&p1=02&p2=02&ref=17597
- Safety Considerations for Photovoltaic Arrays ,AFAC http://www.afac.com.au/docs/guideline/safety-considerations-photovoltaic-arrays.pdf?sfvrsn=8

図 B.4.2-1 各国の消防向けガイドライン

(1)米国

米国では、カリフォルニア州政府の CAL FIRE (California Department of Forestry and Fire 246

Protection) が、消防隊向けの PV 火災時のトレーニングマニュアルとして、2010 年 11 月に「Fire Operations for Photovoltaic Emergency」を公表している。

また、米国では、NFPA(National Fire Protection Agency)の研究組織である The Fire Protection Research Foundation が、PV システムが設置されている建物火災への対処に関する情報を取り纏め、2010 年 5 月に消防隊や指揮官向けに「Fire Fighter Safety and Emergency Response for Solar Power System」を公表している。

さらに UL では,2011 年 11 月に消防向けの火災安全に関する情報提供のため研究プロジェクトの報告書「Fire Fighter Safety and Photovoltaic Installations Research Project」を公開し,同時期にその研究成果に基づいて,消防士がオンラインで PV 火災に関するトレーニング(主に危険の認識)を受けられるサイトを開設している。このサイトは,CAL-FIRE からもリンクを張られており,各消防局が消防隊員のトレーニングとして活用している。

ただし、UL によると、PV 火災への具体的な消防オペレーション方法については、火災の大きさや、消防局の規模などにもよるため、一通りではなく、それぞれの消防局が判断しているとのこと。また、米国カリフォルニア州では、消防隊員になるために消防オペレーションに関する知識を確認する試験が必要となるが、2013年 10 月時点で試験カリキュラムには PV 火災に関するオペレーションは反映されていないとのことである。

(2)ドイツ

ドイツでは、ドイツ消防団連盟(DFV)が、PV システム設置建物への消防出動に際して、消防隊の消火と物件保全に関する情報を取り纏めたガイドライン、「Einsatz an Photovoltaikanlagen Informationen für Einsatzkräfte von Feuerwehren und technischen Hilfsdiensten」を、2010年10月に公表している。

(3)フランス

フランス政府 CEA (原子力・代替エネルギー庁太陽光技術局) や INES (国立太陽エネルギー研究所) などが, 2013 年 6 月に「MaÎtriseR LE Risque LiÉ Aux Install Ations PhotovoltaÏques (太陽光発電システムのリスク管理)」を公表している。

このガイドブックでは、消防の現場職員・人材育成担当や、安全管理担当の幹部に向けて、PV システムの危険性に関する問題点や、消防隊員の任務遂行のための必要な情報等がまとめられている。

(4)オーストラリア

オーストラリアの AFAC(Australian Fire and Emergency Service Authorities Council)が,2013 年 4 月に消防機関に向けて,PV システムの火災時を含めた事故時の対応についてのガイドライン「Safety Considerations for Photovoltaic Arrays」を公表している。

上記で記載した米国・ドイツのガイドラインでは、それぞれ PV 火災時の消防活動におけるリスクを記載しており、項目で整理すると以下のようになる。感電以外にも、隊員の滑落や、危険物質、崩壊および延焼などの項目もリスクとして挙げられている。

表 B.4.2-1 ガイドラインにおけるリスク項目比較

リスク項目	米国	ドイツ	
感電	0	0	
滑落	0	_	
危険物質	0	•	
(有害ガスの発生)		0	
崩壊	0	0	
延焼	0	0	
延 焼	(上記感電に含む)		
その他(蓄電池)	0		
での他(雷电池)	(蓄電池)	_	

付録 B. 4.3 各国の太陽光発電システム設置ガイドライン

PV システムの火災時における,消防隊員へのリスクおよび対応に関する情報提供ガイドラインと並行して,PV システムの設置の観点からの消防保護を目的とした,設置ガイドラインが各国で発表されている。

(1) 各国の太陽光発電システム設置ガイドライン概要

①米国

カリフォルニア州政府の CAL-FIRE (California Department of Forestry and Fire Protection)は、2008年に4月に PV 設置ガイドライン「Solar Photovoltaic Installation Guide」を公表している。このガイドラインは、当時カリフォルニア州の数多くの消防署が認識していた PV 火災へのリスクとその軽減に関する要求を、PV 産業界が CAL-FIRE と取り組んで、統一的にまとめたものである。米国では、その後、このガイドラインをもとに、全米レベルでの規定である建築物の防火に関する主な基準である IFC(International Fire Code)に、消防保護を目的として、PV 設置に関する事項が追加された。

そして, カリフォルニア州は, この全米規定をもとに, 州レベルでの規定である, CFC (California Fire Code) 2013, CBC (California Building Code) 2013, CRC (California Residential Code) 2013 を策定し, 2014年1月1日以降の新規設置 PV に関して, これらの規定への準拠を義務化している。

図 B.4.3-1 PV 設置ガイドラインから規定への変遷例

②ドイツ

ドイツでは、PV 設置業者向けに、PV の防火にかかる設計・施工方法について、「Brandschutzgerecht Planung, Errichtung und Instandhaltung von PV-Anlagen(太陽光発電設備の防火設計・施工・補修)」の中で、関連する規格や推奨規定(2011年2月時点)に基づいて、情報を取り纏めている。この中で、消防保護のためのPV設置等に関する規定事項がカバーされている。

1. はじめに	
2. 設計、施工	2.1 下部構造の構造および固定 2.2 電気工事施工
および補修の原	2.3 避雷器
則	2.4 使用開始点検
	2.5 設備引渡し、指示、標識および文書
	2.6 補修
	2.7 運用者の責任
3. 防火に適し	3.1 一般的な注意事項と用語の解
た設計および施	3.2 建築上の防火
エの原則	3.3 消防隊の人員保護
	3.4 防御的防火
4. PV システム	4.1 建築上の防火の実現
の防火施工	4.2 保護目的の実現 - 消防隊の人員保護
	4.3 PV システムの防御的防火に関する前提条件
	4.4 一般的な建物に関する追加的注意事項
	4.5 特殊な設備タイプに関する注意事項
5. 補遺	5.1 その他の情報
	5.2 消防向け概観図
	5.3 建築基準条例(MBO)に基づく建物等級 - 抜粋
	5.4 製品規格および要求仕様の参照先指示
	5.5 建築材料等級
	5.6 保守および補修チェックリスト
	5.7 用語説明

図 B.4.3-2 ドイツの施工ガイドラインと項目

出所) Brandschutzgerecht Planung, Errichtung und Instandhaltung von PV-Anlagen より作成 ガイドラインの中では、PV システムに関して、インバーター部分等への PV システムの標識の設置, 直流配線の敷設状況等を示した消防向け概観図の設置が推奨されている。その他、ガイドラインでは、直流配線の設置方法について、消防隊員が接触して感電しないように耐火敷設するといった建築上の対策や、消防向け遠隔作動直流スイッチを導入するといった技術的な対策が推奨されている。これらの内のいくつかは、後ほどドイツの規格として採用されていると見られる。

表 B.4.3-1 ガイドラインで記載されている主な消防向け対策

項目	内容
	主電源ボックスおよび建物主配電盤の注意標識による PV システムの標識
組織的な対策	出動隊向け概観図
	既存の消防隊図面の補完
	直流ケーブルの耐火敷設, または
建築上の対策	建物外部への直流ケーブル敷設
建業工の対象	建物外部または建物入り口の傍にインバーターを取り付けることによって、建物内には交流配線
	のみを敷設する。
技術的な対策	直流主配線またはモジュールストリングを遮断するために建物メインヒューズボックス部分に設け
	られた、消防向け遠隔作動直流スイッチ

出所)Brandschutzgerecht Planung, Errichtung und Instandhaltung von PV-Anlagen より作成

③スイス

スイスでも、火災安全に関する施工ガイドラインが、火災保険会社の VKF、および Swisssolar から 2012 年に公開されている。内容はドイツのものに類似している。

図 B.4.3-3 スイスの施工ガイドライン

(2) 設置ガイドライン, 規格における具体的取り組み

以下では、消防隊保護の観点で、前項の各国設置ガイドライン、さらにそれが進んで規格となったもの において、具体的にどのような規定がなされているかについて事例を紹介する。

①太陽光発電システム認知のための取り組み

消防活動開始時に、PV システムを目視等で確認するといった方法は確実であるが、煙などで視界が十分でない場合や、シースルータイプで見えにくい場合など、PV システムを直接確認することが困難な場合も考えられる。このため、PV システム設置の有無がわかるようなサインが開発されている。ドイツでは、PV システム設置を示すサインの表示を規定しており、電気システムの接続ポイント(住宅用接続箱、建物の主分配器、配電盤等)に取り付けることが要求されている。これは 2013 年 5 月に公表された DIN VDE-AR-E2100-712 に規定された。

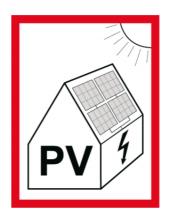


図 B.4.3-4 ドイツにおける PV サイン

②直流配線等での感電危険防止のための取り組み

火災時などにおいて、電力会社によって建物の交流電源が切断された停電状況においても、太陽電池 モジュールに太陽光があたっている場合には、モジュールから接続箱、インバーターまでの直流配線に 常に電圧が発生している。

特にそれら直流配線が屋内にあるような場合には、活動中の消防隊員等がそれらの損傷時に接触し感電する恐れがある。さらに、残火処理時には、壁や天井を破壊する場合があり、その中に直流配線があると、消防隊員が誤って配線を損傷し感電してしまう危険性が高まる。これらの危険性を低減するため、直流配線の設置規定や、ラベル表示などの取り組みが進められている。

a.米国

米国では、NEC(米国電気工事規定)のPVシステムに関する項目(Article690)の中で、消防隊員等の感電リスク低減の観点から、直流配線等の設置方法・ラベル表示等を規定している。例えば、直流配線は屋根下地から25センチメートル離すことが要件となっているが、これは消防隊員が、屋根に通気目的で穴を開けた場合に誤って損傷を与えないためである。また、隊員が感電危険を認識できるように、PVシステムの配線や筐体に、「太陽光発電」というラベルを、最低3m毎に設置することが求められている。

出所)Firefighter Safety and PV Course,UL 図 B.4.3-5 直流配線や接続箱等へのラベリング例

表 B.4.3-2 NEC690.31(E)建物内の直流 PV 源回路と出力回路

項目	内容	
	配線手段は, PV モジュールおよび関連装置で覆われた屋根面の真下でない限り, 屋根下地や	
(1)小屋根裏	野地板から 25 センチメートル以内には設置しないものとする。回路は、屋根の貫通点から支持体	
	への面に対して垂直に、屋根下地から最低 25 センチメートル下を走らせる。	
(2)フレキシブル配線	Metric designator21(市販サイズ 3/4)よりも小径のフレキシブル金属管路(FMC)または 24ミリよ	
手段	りも径の小さいMCケーブルでPV電源回路導体を入れたものを天井根太上または床根太上に走	
	らせる場合は、管路またはケーブルを、最低でも当該管路またはケーブルの高さを有す強固な保	

	護伏せ板を設置する。装置までの配線距離が 1.8 メートル以内である場合を除き、線路が暴露さ
	れた場所であるときは、建物の表面に沿って設置するか、または承認された手段を用いて物理的
	な損傷から保護する。
	PV 発電源導体を入れた以下の配線手段および筐体には、「太陽光発電」という文言を含めた恒
(の)な 亜 ナ ま 二 ナ ト	久的なラベル貼付またはその他の承認された恒久的な表示を行う。
(3)必要な表示およ	(1) 露出した管路, ケーブルトレイ, その他の配線手段。
びラベル	(2) プルボックスおよび接続箱の筐体またはカバー
	(3) 使用可能な空いた線路がある管路体。
	ラベルまたは表示は、設置後も視認できるように行う。太陽光発電源回路のラベルを、配線シス
(4)表示およびラベル	テムの筐体, 壁, 仕切り, 天井, 床で区切られた部分毎に行う。ラベル間または表示間, ラベルと
付け手段と位置	表示の間の距離は3メートル以下とする。本項の要件となっているラベルは、設置場所の環境に
	適したものとする。

出所) NEC2011 より作成 ※正式な和訳ではないため、使用する際には必ず原文をご確認ください。

なお、米国の国際基準評議会(ICC: International Code Council)が策定した建築物の防火に関する主な基準である国際防火基準(IFC 2012)においても、以下のように直流配線等へのラベル・表示、直流配線の位置や設置方法が規定されている。

表 B.4.3-3 PV システム設置に関する規定 マーキング

No.	項目	内容
605.11.1	- + > 4°	マーキングは、屋外および屋内の直流導管、筺体、配線管、ケーブルアセンブリ、接
005.11.1	マーキング	続箱、コンバイナーボックス、切断装置に設置する。
		マーキングの素材は反射性・耐候性があり、使用環境に適したものとする。第
605.11.1.1	材料	605.11.1.2 項から第 605.11.1.4 項の規定に従い、マーキング上の文字はすべて大文字
		表記とし、1 文字の大きさは 3/8 インチ(9.5mm)以上で、赤地に白文字で表記する。
605.11.1.2	マーキング内	マーキングには「WARNING: PHOTOVOLTAIC POWER SOURCE」(注意:太陽光発電)
003.11.1.2	容	の文言を入れる。
605.11.1.3	主要サービス	切断装置が作動している場所から目視できるよう、メインサービス切断装置付近にマ
005.11.1.3	切断	ーキングを設置する。
		屋外および屋内の直流導管、配線管、筺体、ケーブルアセンブリに対して 10 フィート
605.11.1.4	マーキング箇	(3,048mm)間隔でマーキングを設置し、またこれらの屈曲部や湾曲部から 1 フィート
000.11.1.4	所	(305 mm)以内にも設置する。また, ルーフアセンブリや天井アセンブリ, 壁, 柵に貫通
		する場所の上下 1 フィート(305 mm)以内にも設置する。

出所) IFC2012 より作成 ※正式な和訳ではないため、使用する際には必ず原文をご確認ください。

表 B.4.3-4 PV システム設置に関する規定 直流導体の位置

No.	項目	内容
		取外災害を低減し通気の機会を増やすため、太陽光発電回路の導管、配
		線系統,配線管は可能な限り陸棟や隅棟,谷部の近くに設置し,隅棟や谷
		部から外壁まで可能な限りまっすぐ設置する。屋根上の導管の本数を最
605.11.2	直流導体の位置	小限に抑えるため、アレイから直流コンバイナーまでの導管長を最短にし
003.11.2	恒加等体の位置	てサブアレイ間の導管および直流コンバイナー箱までの導管を設置する。
		アレイ間の導管長が最短になるよう直流コンバイナー箱を設置する。直流
		配線が建物内の密閉空間にある場合は、直流配線を金属製導管内また
		は配線管内に設置する。導管は耐力部材の底辺に沿って走らせる。

出所) IFC2012 より作成 ※正式な和訳ではないため、使用する際には必ず原文をご確認ください。

b. ドイツ

ドイツでは、消防隊への情報として、PV システム運営者による敷地及び、直流配線を含む PV システムの各構成機器の種類と配置を示す配置図等の設置を規定している。

この配置図は接続箱や、配電盤などの電気システムの接続ポイントに掲載することが要求されている。また、直流配線の設置方法についても規定されており、特に建物内に直流配線を敷設する場合には、直流配線設備は、防火領域に敷設し、難燃性をもって保護、耐火性の配線設備として識別表示する必要があるなど、厳格な条件が適用される。これらは2013年5月に公表されたDIN VDE-AR-E2100-712に規定された。

Anhang

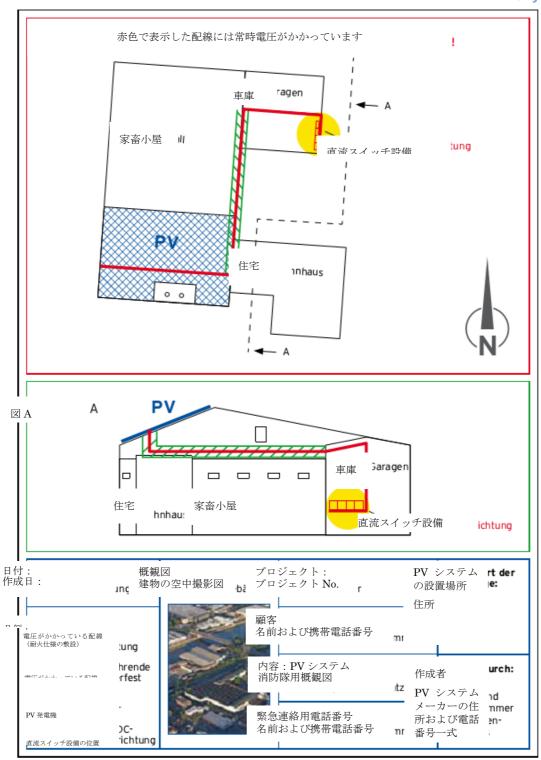


Abb. 27: Überblick über die Position der verschiedenen Komponenten einer Photovoltaik-Anlage.

出所)Informationen fur Einsatzkraffe von Feuerwehren und technischen Hilfsdiensten, ドイツ消防団連盟より作成

図 B.4.3-6 PV システムの各構成機器の配置図

c. オーストラリア

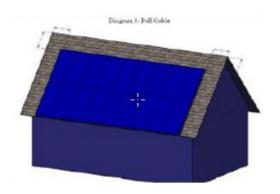
オーストラリアでは、PV アレイの設置安全要求に関する規格(AS/NZS 5033:2012)の中で、配線および切断機器等へのラベリング、さらに火災緊急時の情報サインが規定されている。

表 B.4.3-5 PV アレイの設置安全要求におけるラベリング規定

項目	表 B.4.3 B PV) レイの設直女会 内容	表示例		
	PV アレイの配線は以下のいずれかの方法で特定されなければならない。			
	配線を特徴的に恒久的に、はっきりと、消えない	ようにマーキングする。		
配線	配線がマーキングされない場合,"SOLAR"記さ	れた色つきラベルを 2m 以内の間隔で貼付する。		
	なお,配管,筐体が使用されている場合,その	端および方向が変わる毎に外部表面に"SOLAR"と記		
	す。			
	PV アレイおよび,接続箱には,右のような表示	•		
PV アレイ,接	を貼付しなければならない。	WARNING HAZARDOUS D.C.		
続箱		VOLTAGE		
	PV アレイの直流スイッチは右のような表示とと	PV ARRAY		
	 もに目立つ場所に設置しなければならない。	D.C. ISOLATOR		
	複数の切断機器が使用され、それらが連動し			
	 ない場合には,右のような表示を PCS に隣接し	WARNING MULTIPLE D.C. SOURCES		
切断機器	て貼付しなければならない。	TURN OFF ALL D.C. ISOLATORS TO ISOLATE EQUIPMENT		
	 600V を超えるシステムは、右のような表示を点			
	 検口や通路に表示しなければならない。	WARNING		
		HAZARDOUS VOLTAGE AUTHORISED ACCESS ONLY		
	建物に設置される500Wまたは50V(V_ocarray)	SOLAR ARRAY ON ROOF		
	を超える PV アレイには、メーターボックス(存在			
	する場合)または、主要な配電盤内に右のよう	Open Circuit VoltageV Short Circuit Current A		
	な表示を貼付しなければならない。	Short Sheart Surrent		
火災緊急時	上記と同時に右のような表示を緊急作業員が			
	視認できるように、メーターボックス、配電盤に			
	隣接して貼付しなければならない。	PV		

出所) AS/NZS 5033/2012 より作成 ※正式な和訳ではないため、使用する際には必ず原文をご確認ください。

③消防隊員の屋根活動のための取り組み


消防隊員が、消防活動時にアクセスするための屋上部分のスペース確保等を目的として、PV システムの設置範囲についての規定がされている。

a. 米国

米国の国際基準評議会(ICC: International Code Council)が策定した建築物の防火を規制する主な基準である国際防火基準(IFC 2012)の中で、PV 設置に関して、屋根へのアクセスおよび通路の確保のためのスペーシング等について要求がされている。

米国では、消防活動時に、屋根に穴を開けて煙や熱を逃がすためのオペレーション (ベンチレーション) が実施されることがあり、そのことを考慮して、住宅用建物の軒下 3m 以内に太陽電池を?設置してはならない等の規定もなされている。

IFC2012に準拠したPV設置(住居用)

IFC2012に準拠したPV設置(商業用陸屋根)

出所)Fire Safety Codes and Standards Update Solar Power International, Oct 2013

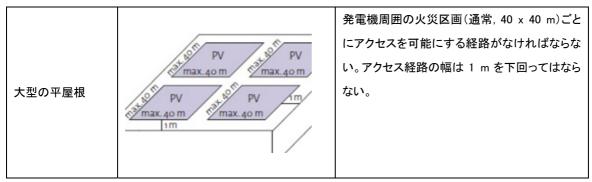
図 B.4.3-7 IFC2012 に準拠した PV システムの設置イメージ

表 B.4.3-6 PV システム設置に関する規定 アクセスと通路

No.	項目		PV システム設直に関する規定 アクセスと連路 内容					
			屋根へのアクセス, 経路, スペーシング要件は第 605.11.3.1 項から第 605.11.3.3.3 項に					
			従い規定される。					
			例外条件:					
605.11.3	アクセ	スと通路	1.各太陽光アレイの大きさはどの軸でも 150 フィート(45,720 mm) × 150 フィート(45,720					
			mm)以内となるよう住宅構造を設計する。					
			2.代替換気手段を有していると消防署が認めた場合, あるいは垂直換気が必要ないと					
			消防署が判断した場合は、パネルやモジュールを屋根の棟全体に設置できる。					
			屋根へのアクセスポイントは,開口部(窓,ドアなど)をまたぐように梯子をかける必要					
605.11.3.1	屋根アク·	セスポイント	がない頑強な場所に設置する。また,頭上に木の枝や電線,標識などの障害物がない					
			場所とする。					
			寄棟屋根にパネルやモジュールを設置する場合、パネルやモジュールが設置されてい					
		寄棟屋根の	る屋根の庇から陸棟まで障害物がない3フィート(914 mm)幅のアクセス経路を確保す					
		奇保座板の 住居	る。アクセス経路は、屋根へ移動する消防隊員の移動荷重を十分支えられる頑強な場					
		11.15	所に設置する。					
			例外条件:本要件はスロープが2:12またはそれ以下の屋根には適用されない。					
	1~2 ##		切妻屋根にパネルやモジュールを設置する場合、パネルやモジュールが設置されてい					
605.113.2	1~2 世帝 住居シス		る屋根の庇から棟まで3フィート(914 mm)幅のアクセス経路を2本確保する。					
003.113.2			例外条件:本要件はスロープが2:12またはそれ以下の屋根には適用されない。					
	7 4		屋根に隅棟や谷部がある住宅にパネルやモジュールを設置する場合、パネルやモジュ					
		棟と谷部の	ールをその両側に有する隅棟や谷部から18インチ(457mm)以上離す。同じ長さのもの					
		ある住居	を隅棟や谷部の片側のみに設置する場合、隅棟や谷部の近くに直接設置できる。					
			例外条件:本要件はスロープが2:12またはそれ以下の屋根には適用されない。					
		住居用建物	住宅にパネルやモジュールを設置する場合、消防隊員の排煙作業の妨げにならないよ					
							の排煙	う,棟下で高さ3フィート(914 mm)を超えて設置しない。
		例外条件:た	だし屋根構造が1世帯住宅または2世帯住宅の屋根構造と同等であると公的な消防法					
		が判断した場	合, 第 605.11.3.2.1 項から第 605.11.3.2.4 項に規定されているアクセス要件や通気要件を					
			使用できる。					
		アクセス	屋根の先端周辺部には、最低 6 フィート(1,829 mm)幅に障害物はないものとする。					
			例外条件:ただし建物の各軸が 250 フィート(76,200 mm)以下の場合, 屋根の先端周辺					
605.11.3.3	その他の		部の最低 4 フィート(1,290mm)幅で障害物がないものとする。					
	住居建物通路		ソーラー装置専用の経路を確保し、その経路は次の要件を満たすものとする。					
		通路	経路は、屋根へ移動する消防隊員の移動荷重を十分支えられる頑強な場所に設置す					
			న 。					
			2. 中心軸通路は屋根の両軸に設ける。中心軸経路は屋根へ移動する消防隊員の移					
			動荷重を十分支えられる頑強な場所に設置する。					
			3. 通路は 4 フィート(1,290 mm)以上の直線状で, 天窓や通気ハッチを妨げない。					

		4. 通路は 4 フィート(1,290 mm)以上の直線状で, 屋根の立管を妨げない。
		5. 屋根のアクセスハッチ周辺 4 フィート(1,290 mm)以上に障害物がなく, 手すりや屋根
		の先端までの経路は 1~4 フィート(1290 mm)で障害物がないものとする。
		ソーラー装置の設計は、次の要件を満たすものとする。
		消防隊員の排煙作業の妨げにならないよう,アレイの大きさは各軸で 150 フィート
		(45,720 mm)×150 フィート(45,720 mm)以下とする。
		2.アレイセクション間の排煙方法として,次のいずれかを選択する。
	排煙	2.1. 幅 8 フィート(2,438 mm)以上の経路 1 本
		2.2. 幅 4 フィート(1,290 mm)以上の経路 1 本, および隣接する天窓や排煙口, 通風口
		2.3. 幅 4 フィート(1,290 mm)以上の経路 1 本, および隣接する 4 フィート×8 フィート
		(1,290 mm×2,438 mm)の「換気口」を通路の両側に 20 フィート(6,096 mm)間隔で交互
		に設置

出所) IFC2012 より作成 ※正式な和訳ではないため、使用する際には必ず原文をご確認ください。

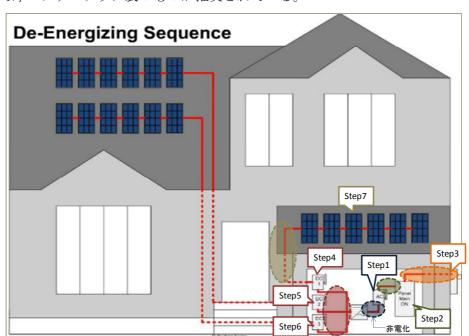

b. ドイツ

ドイツの「PV の防火にかかる設計・施工方法について、「Brandschutzgerecht Planung, Errichtung und Instandhaltung von PV-Anlagen(太陽光発電設備の防火設計・施工・補修)」では、消防隊が火災発生時の安全間隔を保てるように、PV システムの設置に関する規定が説明されている。

具体的には、消防隊員がアクセスできる必要な窓などがない建物については、所定の開放路の確保が求められている。

表 B.4.3-7 PV システム設置に関する規定

屋根種類	設置イメージ	内容
特別なアクセス手段のない両面に PVシステムが設置 された切妻屋根		開放路を通って切妻屋根の片側の小屋組にア クセスできる。
窓など、アクセスを可能にするものがない平屋根または片流れ屋根	多さな。 40×40m未満の敷地・ 防火壁なし	ほかにアクセスを可能にするものがない小型の平屋根の場合は長辺側の開放路を通って小屋組にアクセスできる。 副設備の幅が 20 m 以下の場合,開放路の使用が推奨される。


出所)Brandschutzgerecht Planung, Errichtung und Instandhaltung von PV-Anlagen より作成 ※正式な和訳ではないため,使用する際には必ず原文をご確認ください。

④消防活動の際の対応例

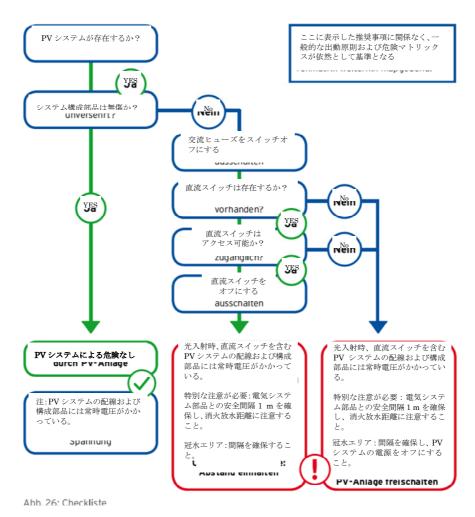
消防隊員にとって、配線からの感電は可能性があるリスクであり、各国のガイドライン等では、非電化の実施順序など、消防隊員がPV火災時の行動に対して、参考となる情報を記載している。

a. 米国

ULのトレーニングサイトでは、住居における PV 非電化のための実施順序の例を挙げている。どのスイッチをオフにすることで、どこの導線に電流が流れなくなるかをステップ毎に示している。直流導線部分の非電化方法例として、PV をシートによって被覆することが提示されている。なお、ULによると、シートは黒くて厚いプラスチック製のものが推奨されている。

スイッチ箇所	非電力箇所
Step1:AC 切断スイッチ	インバーターが続いて切れ、回路の一部が非電化する
Step2:主ブレーカー	AC 切断スイッチへの電力が切られる
Step3:電力サービス	家庭への AC 電力を遮断する

Step4-6: 直流切断スイッチ (3 つ)	3 つ全ての直流スイッチを切断してはじめて、回路の非電化が開始される(インバーターに特に記載がない場合非電化までに 5 分程度かかる)
Step7: 適切なシートの設置	モジュールから直流切断スイッチまでの電圧が安全レベルになる


図 B.4.3-8 PV システム非電化の実施順序例

出所)Firefighter Safety and PV Course,UL より作成

http://lms.ulknowledgeservices.com/catalog/display.resource.aspx?resourceid=352901

b. ドイツ

ドイツのガイドラインでは、PV システムの火災時対応に関して、以下のようにチェック項目毎にフローを作成して、消防隊の対応方針について記載している。

出所)Einsatz an Photovoltaikanlagen,DFV より作成 http://publikationen.dguv.de/dguv/pdf/10002/i-8657.pdf

図 B.4.3-9 PV システムに関する消防隊対応フロー (ドイツガイドライン)

c. オーストラリア

オーストラリアのガイドラインでは、火災を含む緊急時に、以下のような PV システムのシャットダウン手順を推奨している。

表 B.4.3-8 PV システムのシャットダウン手順(オーストラリアガイドライン)

	シャットダウン手順
1	配電盤にて, 施設への AC 電源を切る。
2	配電盤にて、AC"太陽光発電供給主電源"を切る。
3	インバーターの隣にある AC 電力供給電源を切る。
	直流システムの切断スイッチを起動する。
4	まず、インバーターの隣にある直流スイッチを切る。
4	次に、(存在し、安全にアクセスできる場合)パネルの隣にある直流スイッチを切る。ただし、全ての
	システムがこのスイッチを保有しているとは限らない。

出所) Safety Considerations for Photovoltaic Arrays ,AFAC

http://www.afac.com.au/docs/guideline/safety-considerations-photovoltaic-arrays.pdf?sfvrsn=8

(3)PV 火災防止,消防隊保護のための技術対策例

PV 火災防止そのもの, および消防隊員の消防活動時のリスクを低減するために, 各国では様々な技術対策が実施されている。

①アーク短絡保護遮断機 (AFCI) の導入

アークは、電気エネルギーが空気などの非導電性の媒体に流れることにより、発生する現象であり、アーク短絡によって、放出された高い熱が火災を引き起こす可能性がある。(99_付録 A03_地絡とアーク遷移、2Voc事故)

そこで、米国では電気機器の設置やケーブル布設する上での取り決めである米国電気工事規定 (NEC690 (NFPA70) 2011) の中で、アーク短絡を検知、遮断するための認証品登録済みの DC AFCI による保護を要求している。なお、関連する試験や要求事項は UL Subject 1699B に規定されている。 UL によると AFCI の市場拡大はもっと進むと考えていたが、現状それほどでもない。具体的に、AFCI 市場に参入しているのは、SMA、TIGO、EATON、SENSATA などがあるとのこと(UL1699B 認証登録済)。

なお、米国は、ヨーロッパより木造の家が多くより防火保護的な装置が必要という環境があり、通常の交流ではAFCIが要求されている。この流れを受け、2006~2007年頃に、Solar ABC (America Board for Codes)が ULに接触し、PV(直流)に関するAFCIについても要求仕様の作成?が始められたという。

ドイツ Fraunhofer ISE の研究者によると、現時点の、AFCI は、環境によってはアークを検知しない場合があったり、問題がないのに警告を何度もする可能性があったりして、その効果に懐疑的な部分があるとしている。UL としては今後試験方法などの改善を進めていくもよう。

表 B.4.3-9 AFCI の要求 (NEC690.11)

項目	内容
対象となる PV 装置	建築物上の又は建築物を貫通する、直流電源回路、直流出力回路又はその両方を
	備えた 80V 以上の PV システム最大システム電圧で動作する光起電力システム
	認証品登録済み(DC)アーク漏れ回路遮断器(注 AFCI のこと), PV 型, 又は同等の保
要求事項	護を提供するように認定品登録されたその他のシステム構成品によって保護されなけ
	ればならない。
	PV アーク漏れ保護手段は次の要求事項に適合しなければならない
	システムは, 直流 PV 電源及び出力回路内の導体, 接続, モジュール又は他のシステ
	ム構成品の意図された導通での故障に起因するアーク漏れを検出し、断路しなけれ
	ばならない。
	システムは次の一つを使用不能にし、断路しなければならない:
AFCI の適合条件	故障が発見された場合、故障回路に接続されたインバータ又は充電制御装置
	アーク回路内のシステム構成品
	システムは、使用不能にされた又は断路された機器は手動で再起動するように要求
	する
	システムは、遮断器が動作したことを視覚的に指示するアナウンシエータを備えなけ
	ればならない。この指示は自動的にリセットしてはならない。

出所) NEC690.11 (日本規格協会訳) より作成

②消防スイッチの開発

PV アレイ付近で、直流配線を遮断することで、アレイ付近からインバーターまでの直流配線による 感電の危険をなくすための消防スイッチが開発されている。地上に設置されるボタンから遠隔操作によって PV アレイ付近で直流配線を遮断することが可能であり、火災緊急時やメンテナンス時における活用が想定されている。

Fraunhofer ISE によれば、消防スイッチについては、現在ドイツの TUV Rheinland が製品の技術要求についての研究プロジェクトを実施しているとのこと。

なお、米国 UL の研究者によると、消防スイッチは、結局モジュール部分での電流が残るため消防隊に とってはミスリーディングとなる可能性があり、究極的な解決策にはならないのではないかとの意見が あった。

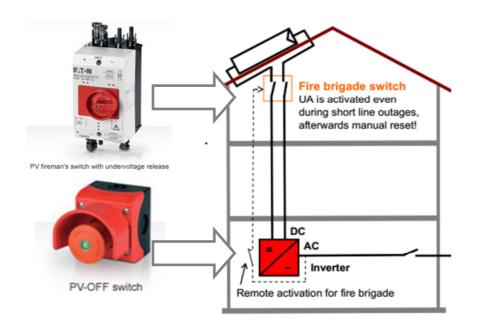


図 B.4.3-10 消防隊スイッチ (左は米国 EATON 社の例)

出所)PV and Fire BrigadeSafety:No Panic,but Realistic Assessment of
Danger and Possible Countermeasures, Heinrich Haeberlin
http://www.pvtest.ch/fileadmin/user_upload/lab1/pv/publikationen/

PV_Fire-Hamburg-2011_mit_K_F-151.pdf

EATON 社ウェブページ, http://www.eaton-solar.com/en/safety/index.phtml

付録 B. 4. 4 消防保護を目的とした国内外での対応(まとめ)

米国,ドイツの2010年以降,PV 火災時の消防隊員のリスクと,対応に関する情報を消防隊員等に周知するため,消防向けのガイドラインが公表されている。ただし,対応に関する情報については,ガイドラインではあくまで推奨の位置づけとなっており,具体的な消防オペレーションについては,消防の規模や実際の火災状況により異なるため,現時点では,各消防局等の判断に任されているとみられる。また,米国,ドイツでは消防隊員の安全な消防活動を考慮し,PV システム表示や,直流配線の設置方法,PV 設置などに関する規定が既に開発されている。

PV 設置に関する規定は、国それぞれの消防のオペレーション方法を考慮して策定されている。例えば、 米国では、屋根の通気(ベンチレーション)を実施するため、そのためのスペース確保についても要求 がなされている。

これら規定は様々な関係者が、長い間かけて策定されてきた経緯がある。例えば、米国の事例にみるように、カリフォルニア州の各消防署からあった要求を政府 CAL FIRE が 2008 年にガイドラインとして纏めて発表、それがベースとなり、2014 年からのカリフォルニア州の規定が策定された。

さらに、技術の観点からも関連する対策が実施されている。米国では、PV 火災防止の技術対策として、AFCI の導入が NEC2011 から義務化されている。ドイツでは、消防保護のための対策として、消防スイッチ(遠隔直流スイッチ)が推奨されている。いずれも、比較的新しい技術・製品であるが故に、課題も指摘されており、今後、改良した技術や、新しい技術対策方法が出てくる可能性も考えられる。

太陽光発電の直流電気安全基準策定委員会

氏名 所属

西川 省吾 日本大学 (委員長)

(委員) 安藤 健志 盤標準化協議会(日東工業株式会社)

> 植田 譲 東京理科大学

遠藤 浩二 一般社団法人太陽光発電協会

岸添 義彦 英弘精機株式会社

総務省消防庁 消防大学校 消防研究セ 田村 裕之

ンター

都筑 建 太陽光発電所ネットワーク

豊浦 信行 オムロン株式会社

高坂 秀世 一般社団法人 日本電線工業会

東京理科大学 松山 賢

山岸 貴俊 能美防災株式会社

山下 浩徳 京セラ株式会社

吉富 政宣 有限会社吉富電気

一般社団法人 日本電線工業会 原田 真昭 (途中退任委員)

> 亀田 正明 一般社団法人太陽光発電協会

(事務局) 加藤 和彦 独立行政法人産業技術総合研究所

> 大関 崇 独立行政法人産業技術総合研究所

河本 桂一 みずほ情報総研 並河 昌平 みずほ情報総研 矢次 洋平 みずほ情報総研

2015 年(平成 27 年)3 月 31 日 作成 〒305-8568 茨城県つくば市梅園 1-1-1 中央第 2 独立行政法人 産業技術総合研究所 太陽光発電工学研究センター システムチーム E-mail: pvfire-ml@aist.go.jp